Abstract

For the first time we have demonstrated an approach to control transmission of light through a single nanohole with the use of photon crystal microcavity. By use of the approach 28-fold enhanced transmission of light through a single nanohole in Au film has been experimentally demonstrated. The approach has the following advantages: (1) it enables to considerably increase transmission of light through a single nanohole, (2) the increase in transmission is unaffected by the hole diameter, (3) the transmission of nanohole is selective in frequency, the width of the resonance ~λ/90, (4) no auxiliary structures are necessary on the surface of the Au film (extra nanoholes, grooves, etc.).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
    [CrossRef]
  2. V. I. Balykin, “Atom optics and nanotechnology,” Phys. Usp. 52(3), 1 (2009).
    [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  4. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  5. E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
    [CrossRef] [PubMed]
  6. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  7. C. J. Bouwkamp, Diffraction theory, (London: Physical Society 1954).
  8. F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [CrossRef]
  9. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]
  10. F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
    [CrossRef]
  11. E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured surfaces as optical metamaterials, A. A. Maradudin ed., (Cambridge: Cambridge University Press 2011), pp. 1–27.
  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  14. C. M. Kuznetzova and M. A. Okatova, Handbook of Optics – Technologist (Mashinostroenie Leningradskoe otdelenie 1983) (in russian).
  15. M. Born and E. Wolf, Principles of Optics (Pergamon 1970).
  16. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
    [CrossRef] [PubMed]
  17. D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
    [CrossRef]
  18. D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
    [CrossRef]
  19. D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
    [CrossRef]
  20. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
    [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  22. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  23. P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.
  24. V. I. Balykin, V. V. Klimov, and V. S. Letokhov, “Atom nanooptics,” in Handbook of Theoretical and Computational Nanotechnology, M. Rieth M., W. Schommers eds., (Elsevier 2006), pp. 1–78.
  25. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [CrossRef] [PubMed]
  26. J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
    [CrossRef]
  27. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
    [CrossRef] [PubMed]
  28. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
    [CrossRef]

2010

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

2009

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

V. I. Balykin, “Atom optics and nanotechnology,” Phys. Usp. 52(3), 1 (2009).
[CrossRef]

2007

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

2005

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

2004

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

2003

2002

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

2001

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

2000

J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

1999

C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1964

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Adams, D. P.

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

Afanasiev, A. E.

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Baer, D. R.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Balykin, V. I.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

V. I. Balykin, “Atom optics and nanotechnology,” Phys. Usp. 52(3), 1 (2009).
[CrossRef]

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Barbastathis, G.

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

Baturin, A. S.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Buse, K.

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

Cirac, J. I.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

Droubay, T. C.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Engelhard, M. H.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

García-Vidal, F. J.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

Hodges, V.

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

Ishi, T.

Jacobs, M. H.

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kalkum, F.

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

Kim, J.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Klimov, V. V.

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuzin, A. A.

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Lapshin, D. A.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

Law, T. J.

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

Lea, A. S.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Lee, B.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Linke, R. A.

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

Loncar, M.

J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Martín-Moreno, L.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

Mathews, C.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Melentiev, P. N.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Moreno, E.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

Nachimuthu, P.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Nahata, A.

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

Ohashi, K.

Opila, R. L.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Pashley, D. W.

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

Patterson, N.

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Peter, M.

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

Pritchard, D.

C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
[CrossRef]

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

Saraf, L. V.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Scherer, A.

J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Sheshin, E. P.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

Stickle, W. F.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Stowell, M. J.

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Exter, M. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Vasile, M. J.

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

Vuckovic, J.

J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

Wallace, R. M.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Wieman, C.

C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
[CrossRef]

Wineland, D.

C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
[CrossRef]

Woerdman, J. P.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wright, B. S.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Zablotskiy, A. V.

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

Appl. Phys. B

F. Kalkum, M. Peter, G. Barbastathis, and K. Buse, “External-resonance-enhanced transmission of light through sub-wavelength holes,” Appl. Phys. B 100(1), 169–172 (2010).
[CrossRef]

Appl. Phys. Lett.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture,” Appl. Phys. Lett. 84(12), 2040 (2004).
[CrossRef]

IEEE J. Quantum Electron.

J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000).
[CrossRef]

J. Vac. Sci. Technol. A

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. L. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxides films relative to the sputter rate of SiO2,” J. Vac. Sci. Technol. A 28(5), 1060–1072 (2010).
[CrossRef]

Microsc. Microanal.

D. P. Adams, M. J. Vasile, V. Hodges, and N. Patterson, “Focused ion beam fabrication of nanopores in metal and dielectric membranes,” Microsc. Microanal. 13(S02), 1512–1513 (2007).
[CrossRef]

Nanotechnology

P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology 20(23), 235301 (2009).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub- wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Opt. Lett.

Philos. Mag.

D. W. Pashley, M. J. Stowell, M. H. Jacobs, and T. J. Law, “The growth and structure of gold and silver deposits formed by evaporation inside an electron microscope,” Philos. Mag. 10(103), 127–158 (1964).
[CrossRef]

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. Lett.

E. Moreno, A. I. Fernández-Domínguez, J. I. Cirac, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of cold atoms through subwavelength apertures,” Phys. Rev. Lett. 95(17), 170406 (2005).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Phys. Usp.

V. I. Balykin, “Atom optics and nanotechnology,” Phys. Usp. 52(3), 1 (2009).
[CrossRef]

Rep. Prog. Phys.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[CrossRef]

Rev. Mod. Phys.

C. Wieman, D. Pritchard, and D. Wineland, “Atom cooling, trapping, and quantum manipulation,” Rev. Mod. Phys. 71(2), S253–S262 (1999).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

F. J. García de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Other

C. J. Bouwkamp, Diffraction theory, (London: Physical Society 1954).

C. M. Kuznetzova and M. A. Okatova, Handbook of Optics – Technologist (Mashinostroenie Leningradskoe otdelenie 1983) (in russian).

M. Born and E. Wolf, Principles of Optics (Pergamon 1970).

E. Popov and N. Bonod, “Physics of extraordinary transmission through subwavelength hole arrays,” in Structured surfaces as optical metamaterials, A. A. Maradudin ed., (Cambridge: Cambridge University Press 2011), pp. 1–27.

P. N. Melentiev, A. E. Afanasiev, V. V. Klimov, V. I. Balykin, A. A. Kuzin, and A. V. Zablotskiy, A. S. Baturin are preparing a manuscript to be called “Polarization sensitive transmission of a single nanohole embedded in a photonic crystal nanocavity”.

V. I. Balykin, V. V. Klimov, and V. S. Letokhov, “Atom nanooptics,” in Handbook of Theoretical and Computational Nanotechnology, M. Rieth M., W. Schommers eds., (Elsevier 2006), pp. 1–78.

J. D. Jackson, Classical Electrodynamics (Wiley, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of samples under study: (a) single nanohole with diameter of 60 nm in 220 nm thick Au film, comprising the last layer of photonic crystal microcavity, (b) single nanohole with diameter of 60 nm in 220 nm thick Au film.

Fig. 2
Fig. 2

Optical properties of the photonic crystal microcavity, being investigated in the paper: (a) microcavity refractive index stack design, (b) calculated resulting electric-field distribution for the PCM at resonant frequency λ = 789.6 nm).

Fig. 3
Fig. 3

Reflection spectra of the photonic crystal microcavity and forming it 1D photonic crystal: (a) calculated with use of characteristic matrix approach, (b) experimentally measured at 12° to the axis of the crystal (reflection spectrum at normal incidence angle is shown in the inset).

Fig. 4
Fig. 4

Electron-microscope image of the nanoholes array made in Au layer of photonic crystal microcavity. Enlarged image of a one nanohole is shown in the inset.

Fig. 5
Fig. 5

Experimental setup for measurement the transmission of a single nanohole.

Fig. 6
Fig. 6

Transmissions of nanoholes in the Au film and nanoholes in the photonic crystal microcavity at identical parameters of illumination and detection at a light wavelength nearby the PCM’s resonance mode: Left column – nanoholes in the Au film: (a) the scheme of nanoholes illumination in the reference Au film, (b) nanoholes images of the reference Au film in the 2D CCD of the microscope, (c) cross-section of the images for the nanoholes in the reference Au film. Right column – nanoholes in the photonic crystal microcavity: (d) the scheme of nanoholes illumination in the photonic crystal microcavity, (e) nanoholes images of the photonic crystal microcavity in the 2D CCD of the microscope, (f) cross-section of the images for the nanoholes produced in the PCM.

Fig. 7
Fig. 7

Transmission spectra for a single nanohole in the reference Au film and for a single nanohole in the photonic crystal microcavity: (a) linear scale, (b) logarithmic scale.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M= M 1 M 2 M 12 M Au =[ m 11 m 12 m 21 m 22 ],
M j =[ cos(k h j ) isin(k h j )/ Y j i Y j sin(k h j ) cos(k h j ) ].
[ E in H in ]=[ M ][ E out H out ],
r= Y 0 m 11 + Y 0 Y s m 12 m 21 Y s m 22 Y 0 m 11 + Y 0 Y s m 12 + m 21 + Y s m 22 ,
t= 2 Y 0 Y 0 m 11 + Y 0 Y s m 12 + m 21 + Y s m 22 .
I 0 = R PCM res I 0 +(1 R Ti O 2 /Au ) I Ti O 2 ,

Metrics