Abstract

Emerging plasmonic and photovoltaic applications benefit from effective interaction between optical antennas and unidirectional incident light over a wide spectrum. Here, we propose a honeycomb array of plasmonic nanoantennas with broken symmetry to obtain a unidirectional radiation pattern over a wide spectrum. The honeycomb nanoantenna array is based on a hexagonal grid with periodically arranged nanostructure building blocks. To analyze the far-field optical distribution and spectral behavior of the plasmonic antenna honeycomb, a two-dimensional Wigner-Seitz unit cell is used together with periodic boundary conditions. As a result of the vectoral superposition of the fields produced by the Wigner-Seitz unit cells, far-zone optical fields interfere constructively or destructively in different directions. The constructive interference along the array’s normal direction engenders unidirectional radiation. Due to the broken symmetry of the Wigner-Seitz cell, multiple resonances are supported by the plasmonic antenna honeycomb array over a broad spectrum.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  3. A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  4. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  5. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
    [CrossRef] [PubMed]
  6. C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
    [CrossRef]
  7. K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef] [PubMed]
  8. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
    [CrossRef] [PubMed]
  9. K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  10. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
    [CrossRef] [PubMed]
  11. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
    [CrossRef] [PubMed]
  12. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
    [CrossRef]
  13. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
    [CrossRef] [PubMed]
  14. T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
    [CrossRef] [PubMed]
  15. Y. G. Liu, Y. Li, and W. E. I. Sha, “Directional far-field response of a spherical nanoantenna,” Opt. Lett. 36, 2146–2148 (2011).
    [CrossRef] [PubMed]
  16. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef] [PubMed]
  17. N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
    [CrossRef]
  18. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
    [CrossRef]
  19. G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
    [CrossRef] [PubMed]
  20. A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
    [CrossRef] [PubMed]
  21. B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19, 10049–10056 (2011).
    [CrossRef] [PubMed]
  22. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
    [CrossRef] [PubMed]
  23. X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
    [CrossRef]
  24. A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
    [CrossRef]
  25. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
    [CrossRef] [PubMed]
  26. A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
    [CrossRef] [PubMed]
  27. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  28. E. S. Unlu, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011).
    [CrossRef] [PubMed]
  29. S. V. Boriskina and L. D. Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538–540 (2010).
    [CrossRef] [PubMed]
  30. C. Kittel, Introduction to solid state physics (Wiley, New York, NY, 2005).
  31. K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
    [CrossRef]
  32. J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).
  33. C. A. Balanis, Advanced engineering electromagnetics (Wiley, New York, NY, 1989).
  34. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, NY, 2007).
  35. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY, 1998).
  36. R. E. Collin, Antennas and radiowave propagation (McGraw Hill, New York, NY, 1985).
  37. C. A. Balanis, Antenna theory analysis and design (Wiley, New York, NY, 1982).

2011 (12)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Y. G. Liu, Y. Li, and W. E. I. Sha, “Directional far-field response of a spherical nanoantenna,” Opt. Lett. 36, 2146–2148 (2011).
[CrossRef] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[CrossRef] [PubMed]

B. Liu, D. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express 19, 10049–10056 (2011).
[CrossRef] [PubMed]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
[CrossRef] [PubMed]

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
[CrossRef] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

E. S. Unlu, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011).
[CrossRef] [PubMed]

2010 (7)

S. V. Boriskina and L. D. Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538–540 (2010).
[CrossRef] [PubMed]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

2009 (3)

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

2008 (3)

2007 (2)

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

2005 (1)

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

2003 (1)

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Ahmed, A.

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[CrossRef] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
[CrossRef] [PubMed]

Alù, A.

X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
[CrossRef] [PubMed]

Atwater, H.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Balanis, C. A.

C. A. Balanis, Advanced engineering electromagnetics (Wiley, New York, NY, 1989).

C. A. Balanis, Antenna theory analysis and design (Wiley, New York, NY, 1982).

Bao, K.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Belov, P.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Bharadwaj, P.

Bidault, S.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Bonod, N.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Boriskina, S. V.

Challener, W.

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Chu, P. K.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

Collin, R. E.

R. E. Collin, Antennas and radiowave propagation (McGraw Hill, New York, NY, 1985).

Crozier, K. B.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Davoyan, A. R.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Deutsch, B.

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

Devilez, A.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Duyne, R. P. V.

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

Fischer, H.

Giannini, V.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Gordon, R.

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[CrossRef] [PubMed]

Gu, X.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Hartschuh, A.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Johansson, P.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kall, M.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Kittel, C.

C. Kittel, Introduction to solid state physics (Wiley, New York, NY, 2005).

Kivsha, Y. S.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Kong, J. A.

J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Li, Y.

Liu, B.

Liu, N.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Liu, X.

X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Liu, Y. G.

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

Maksymov, I. S.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Martin, O. J. F.

Miljkovi, V. D.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Negro, L. D.

Nordlander, P.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY, 1998).

Peng, C.

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

Polman, A.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Qiu, T.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

Rivas, J. G.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Rolly, B.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, NY, 2007).

Sanchez, E. J.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Sendur, K.

E. S. Unlu, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Sha, W. E. I.

Shegai, T.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Shi, C.

Simovski, C.

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

Stefani, F. D.

Stout, B.

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, NY, 2007).

Tok, R. U.

Unlu, E. S.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16, 10858–10866 (2008).
[CrossRef] [PubMed]

Vecchi, G.

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Wang, D.

Wang, L.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Xie, X. S.

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Xu, H.

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

Xu, X.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

Yang, T.

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
[CrossRef] [PubMed]

Zhang, W.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

J. Microsc. (1)

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

J. Sol. Energ-T ASME (1)

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,” J. Sol. Energ-T ASME 132, 011014 (2010).
[CrossRef]

Nano Lett. (5)

T. Shegai, V. D. Miljkovi, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Kall, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11, 706–711 (2011).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007).
[CrossRef] [PubMed]

A. Ahmed and R. Gordon, “Directivity enhanced raman spectroscopy using nanoantennas,” Nano Lett. 11, 1800–1803 (2011).
[CrossRef] [PubMed]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Plasmonic Antennas for Directional Sorting of Fluorescence Emission,” Nano Lett. 11, 2400–2406 (2011).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Directional Double Fano Resonances in Plasmonic Hetero-Oligomers,” Nano Lett. 11, 3694–3700 (2011).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett. 6, 199 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10, 631–636 (2011).
[CrossRef] [PubMed]

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

N. Bonod, A. Devilez, B. Rolly, S. Bidault, and B. Stout, “Ultracompact and unidirectional metallic antennas,” Phys. Rev. B 82, 115429 (2010).
[CrossRef]

X. Liu and A. Alù, “Subwavelength leaky-wave optical nanoantennas: Directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

G. Vecchi, V. Giannini, and J. G. Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett. 102, 146807 (2009).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sanchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi RRL (1)

A. E. Miroshnichenko, I. S. Maksymov, A. R. Davoyan, C. Simovski, P. Belov, and Y. S. Kivsha, “An arrayed nanoantenna for broadband light emission and detection,” Phys. Status Solidi RRL 5, 347–349 (2011).
[CrossRef]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Other (7)

C. Kittel, Introduction to solid state physics (Wiley, New York, NY, 2005).

J. A. Kong, Electromagnetic wave theory (Wiley, New York, NY, 1990).

C. A. Balanis, Advanced engineering electromagnetics (Wiley, New York, NY, 1989).

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (Wiley, New York, NY, 2007).

E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY, 1998).

R. E. Collin, Antennas and radiowave propagation (McGraw Hill, New York, NY, 1985).

C. A. Balanis, Antenna theory analysis and design (Wiley, New York, NY, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) A schematic illustration of the honeycomb plasmonic nanoantenna array. The boundaries of Wigner-Seitz cells are highlighted with thin-black lines.(b) An asymmetric Wigner-Seitz unit cell which forms the building block of the honeycomb plasmonic nanoantenna array.

Fig. 2
Fig. 2

(a) Near-zone field distribution for the isolated antenna plotted on the plane 1 nm above the antenna; (b) Spectral distribution of the antenna far-field radiation in the normal direction; (c) Far-zone radiation pattern for the isolated antenna; and (d) Far-zone radiation pattern for the isolated antenna on ϕ = 0° cut.

Fig. 3
Fig. 3

(a) Near-zone field distribution for the honeycomb plasmonic antenna array plotted on the plane 1 nm above the antenna. The boundaries of Wigner-Seitz cells are highlighted with thin-black lines. (b) Near-zone field distribution on a single Wigner-Seitz unit cell of the honeycomb plasmonic antenna array; (c) Far-zone radiation pattern for the honeycomb plasmonic antenna array; and (d) Spectral distribution of the antenna far-field radiation in the normal direction for the honeycomb plasmonic antenna array.

Fig. 4
Fig. 4

A comparison between the far-zone radiation pattern of the honeycomb plasmonic antenna array and the isolated nanoantenna on ϕ = 0° cut.

Fig. 5
Fig. 5

A schematic representation of the geometric parameters associated with a honeycomb plasmonic antenna array that are used in the array pattern calculation.

Fig. 6
Fig. 6

(a) Individual antenna element pattern Y (θ,ϕ) for the honeycomb plasmonic antenna array; (b) The array pattern AF (θ,ϕ) for the honeycomb plasmonic antenna array; (c) The effect of the increased number of array elements on the directionality of the radiation pattern; and (d) The effect of the wavelength on the directionality of the radiation pattern.

Fig. 7
Fig. 7

Spectral distribution of antenna far-field radiation in the normal direction for various asymmetric honeycomb plasmonic antenna arrays with dimensions listed in Table 1.

Fig. 8
Fig. 8

(a) The near-zone field distribution of an asymmetric single Wigner-Seitz unit cell in the honeycomb plasmonic antenna array at λ=875 nm; (b) the near-zone field distribution at λ=1300 nm; (c) The far-zone radiation pattern for the asymmetric honeycomb plasmonic antenna array at λ=875 nm; (d) A comparison of the far-zone radiation pattern of the asymmetric honeycomb plasmonic antenna array at different spectral peaks.

Tables (1)

Tables Icon

Table 1 A list of Wigner-Seitz cell dimensions used in this study.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E FF ( r ) = i ω μ [ I + 1 k 2 ] exp ( i k r ) 4 π r d S exp ( i k r ) ( 2 E NF ( r ) × z ^ )
R ( θ , ϕ ) = Y ( θ , ϕ ) × A F ( θ , ϕ )
A F ( θ , ϕ ) = m = N N n = N N exp ( i k r m n )
r m n = m a + n b
r m n = 2 m L 1 x ^ + 2 n L 2 ( cos α x ^ + sin α y ^ )
A F ( θ , ϕ ) = | sin ( ( 2 N + 1 ) ) k x L 1 sin ( k x L 1 ) | | sin ( ( 2 N + 1 ) ) [ cos α k x L 2 + sin α k y L 2 ] sin ( [ cos α k x L 2 + sin α k y L 2 ] ) |

Metrics