Abstract

We present experimental evidence of enhancement of the second-harmonic generation by using a multipass non-collinear phase-matching configuration for a Q-switched nanosecond-kilohertz Nd:YVO4 laser. In comparison with the single-pass configuration, the enhancement factor of the second-harmonic laser with the two-pass configuration is up to 2.5 in a type I beta-barium borate crystal, which can be further increased by adding the third-pass through the crystal. In addition, we provide a general relationship between the phase-matching angle and tilting azimuth angles of the unconverted fundamental and second-harmonic lasers. The multipass non-collinear phase-matching configuration is capable of reducing a thermal effect due to the absorption in the crystal and effectively avoiding damages on the crystal surfaces.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008), Chap. 2.
  2. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
    [CrossRef]
  3. D. J. Armstrong, W. J. Alford, T. D. Raymond, A. V. Smith, and M. S. Bowers, “Parametric amplification and oscillation with walkoff-compensating crystals,” J. Opt. Soc. Am. B 14(2), 460–474 (1997).
    [CrossRef]
  4. Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
    [CrossRef]
  5. J. J. Chang, E. P. Dragon, and I. L. Bass, “315-W pulsed-green generation with a diode-pumped Nd:YAG laser,” Conference on Lasers and Electro-Optics 1998 Technical Digests (Optical Society of America, Washington, D.C., 1998) CPD2.
  6. B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
    [CrossRef]
  7. K. H. Hong, C. J. Lai, A. Siddiqui, and F. X. Kärtner, “130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier,” Opt. Express 17(19), 16911–16919 (2009).
    [CrossRef] [PubMed]
  8. S. Umegaki, “Two-pass optical second-harmonic generation,” Jpn. J. Appl. Phys. 19(5), 949–954 (1980).
    [CrossRef]
  9. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
    [CrossRef] [PubMed]
  10. G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
    [CrossRef]
  11. U. Chatterjee, S. Gangopadhyay, C. Ghosh, and G. C. Bhar, “Multipass configuration to achieve high-frequency conversion in Li2B4O7 crystals,” Appl. Opt. 44(5), 817–821 (2005).
    [CrossRef] [PubMed]
  12. H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
    [CrossRef]
  13. T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
    [CrossRef]
  14. G. B. Arfken and H. J. Weber, Mathematical Methods for Physics, 6th ed. (Elsevier Academic Press, 2005), Chap. 3.
  15. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 1999), p.70 and p.96.
  16. J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
    [CrossRef]
  17. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19(12), 11152–11169 (2011).
    [CrossRef] [PubMed]

2011

2009

2008

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

2005

2003

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

2000

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

1998

1997

1991

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
[CrossRef]

1990

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
[CrossRef]

1980

S. Umegaki, “Two-pass optical second-harmonic generation,” Jpn. J. Appl. Phys. 19(5), 949–954 (1980).
[CrossRef]

1971

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Ai-Yun, Y.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Alford, W. J.

Arisawa, T.

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

Armstrong, D. J.

Bhar, G. C.

U. Chatterjee, S. Gangopadhyay, C. Ghosh, and G. C. Bhar, “Multipass configuration to achieve high-frequency conversion in Li2B4O7 crystals,” Appl. Opt. 44(5), 817–821 (2005).
[CrossRef] [PubMed]

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
[CrossRef]

Bowers, M. S.

Chatterjee, U.

U. Chatterjee, S. Gangopadhyay, C. Ghosh, and G. C. Bhar, “Multipass configuration to achieve high-frequency conversion in Li2B4O7 crystals,” Appl. Opt. 44(5), 817–821 (2005).
[CrossRef] [PubMed]

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
[CrossRef]

Datta, P.

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
[CrossRef]

Devi, K.

Ebrahim-Zadeh, M.

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Fang, W.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Fejer, M. M.

Furuya, H.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Gangopadhyay, S.

Ghosh, C.

Hirano, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Hong, K. H.

Imeshev, G.

Kärtner, F. X.

Kiriyama, H.

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

Koyata, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Kumar, S. C.

Kusukame, K.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Lai, C. J.

Maruyama, Y.

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

Matsuoka, S.

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

Mizushima, T.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Mizuuchi, K.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Pavel, N.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Proctor, M.

Raymond, T. D.

Rui-Ning, L.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Samanta, G. K.

Shikii, S.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Siddiqui, A.

Smith, A. V.

Tajime, T.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Umegaki, S.

S. Umegaki, “Two-pass optical second-harmonic generation,” Jpn. J. Appl. Phys. 19(5), 949–954 (1980).
[CrossRef]

Xue-Chun, L.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Yamamoto, K.

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Yamamoto, S.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Ying, Z.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Yong, B.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Zhi-Pei, S.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Zondy, J.-J.

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
[CrossRef]

Zu-Yan, X.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51(5), 317–319 (1990).
[CrossRef]

Appl. Phys. Express

T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, “Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,” Appl. Phys. Express 1, 032003 (2008).
[CrossRef]

Appl. Phys. Lett.

J. M. Yarborough, J. Falk, and C. B. Hitz, “Enhancement of optical second harmonic generation by utilizing the dispersion of air,” Appl. Phys. Lett. 18(3), 70–73 (1971).
[CrossRef]

Chin. Phys. Lett.

B. Yong, S. Zhi-Pei, L. Rui-Ning, Z. Ying, Y. Ai-Yun, L. Xue-Chun, X. Zu-Yan, and W. Fang, “Efficient dual-LBO second-harmonic generation by using a polarization modulation configuration,” Chin. Phys. Lett. 20(10), 1755–1758 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. Umegaki, “Two-pass optical second-harmonic generation,” Jpn. J. Appl. Phys. 19(5), 949–954 (1980).
[CrossRef]

Opt. Commun.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system,” Opt. Commun. 184(1-4), 231–236 (2000).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second harmonic generation with gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
[CrossRef]

H. Kiriyama, S. Matsuoka, Y. Maruyama, and T. Arisawa, “High efficiency second-harmonic generation in four-pass quadrature frequency conversion scheme,” Opt. Commun. 174(5-6), 499–502 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008), Chap. 2.

J. J. Chang, E. P. Dragon, and I. L. Bass, “315-W pulsed-green generation with a diode-pumped Nd:YAG laser,” Conference on Lasers and Electro-Optics 1998 Technical Digests (Optical Society of America, Washington, D.C., 1998) CPD2.

G. B. Arfken and H. J. Weber, Mathematical Methods for Physics, 6th ed. (Elsevier Academic Press, 2005), Chap. 3.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed. (Springer-Verlag, Berlin Heidelberg, 1999), p.70 and p.96.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A critical multipass non-collinear phase-matching configuration of the second-harmonic generation; (b) The first pass phase-matching style; (c) The second-pass phase-matching style by using a mirror denoted as M to reflect the unconverted fundamental and second-harmonic lasers.

Fig. 2
Fig. 2

(a) The azimuth angle β as the function of the tilting angle α for type I BBO, type I LBO and type II KTP crystals to satisfy the non-collinear phase-matching condition in the second pass; (b) The ratio of the displacement Δo along the o-axis direction to the distance L between the crystal and mirror M for type I BBO, type I LBO and type II KTP crystals.

Fig. 3
Fig. 3

The average power of the second-harmonic laser generated in the BBO crystal as the function of the fundamental average laser at the repetition rate of 30 kHz and the single pulse duration of 17.3 ns.

Fig. 4
Fig. 4

Repetition-rate independence of the second-harmonic laser generated in the BBO crystal at the injection current of 40 A to the laser system. (a) For the average power, peak power, and pulse duration of the fundamental laser. (b) For the corresponding average power of the second-harmonic laser. (c) For the conversion efficiency of the second-harmonic laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β=± cos 1 [ cos θ m cos( θ m α) ].
β± [ θ m 2 ( θ m α) 2 ] 1/2 .
Δ o =L cos 2 ( θ m α) cos 2 θ m cos(α)cos θ m [ 1+( d L ) 1 1+( n 2 1) cos 2 ( θ m α) (cos θ m cosα) 2 ],

Metrics