Abstract

We propose a novel beam-steering device based on a slow-light waveguide amplifier. In this paper, we present the idea of this steering technique and show its modeling characteristics. Giant steering of the radiation beam is obtained by tuning the wavelength of input light, which is coupled into the Bragg reflector waveguide. A tunable deflection-angle range can be over 40 degrees. High beam coherency and flat intensity distribution enable us to obtain an ultra-large number of resolution-points over 1,000 for few-millimeter long devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Wyant, “Rotating diffraction grating laser beam scanner,” Appl. Opt. 14(5), 1057–1058 (1975).
    [CrossRef] [PubMed]
  2. T. Matsuda, F. Abe, and H. Takahashi, “Laser printer scanning system with a parabolic mirror,” Appl. Opt. 17(6), 878–884 (1978).
    [CrossRef] [PubMed]
  3. K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
    [CrossRef]
  4. Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
    [CrossRef]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  6. F. Xiao, W. Hu, and A. Xu, “Optical phased-array beam steering controlled by wavelength,” Appl. Opt. 44(26), 5429–5433 (2005).
    [CrossRef] [PubMed]
  7. R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
    [CrossRef]
  8. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
    [CrossRef] [PubMed]
  9. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  10. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32(8), 915–917 (2007).
    [CrossRef] [PubMed]
  11. U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
    [CrossRef]
  12. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
    [CrossRef]
  13. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  14. E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
    [CrossRef]
  15. G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, “Slow light modulator with Bragg reflector waveguide,” presented at the Optical Fiber Communications Conference, PDP34, Anaheim, California, USA, 25–29 Mar. 2007.
  16. A. Fuchida, A. Matsutani, and F. Koyama, “Slow-light total-internal-reflection switch with bending angle of 30 deg,” Opt. Lett. 36(14), 2644–2646 (2011).
    [CrossRef] [PubMed]
  17. T. Shimada and F. Koyama, “Lateral Integration of VCSEL with Slow Light Amplifier/Modulator,” in Proceedings of IEEE Photonics Society, 2010 23rd Annual Meeting, (Institute of Electrical and Electronics Engineers, Denver, 2010), 244–245.
  18. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978).
    [CrossRef]
  19. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  20. G. Hirano and F. Koyama, “Slowing light in Bragg reflector waveguide with tilt coupling scheme,” presented at 20th Annual Meeting of The IEEE Laser and Electro-Optical Society, LEOS2007, MK1, Florida, U.S.A., 21–25 Oct. 2007.
  21. A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2(3), 211–233 (1993).
    [CrossRef]
  22. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience,1995), Chap. 4.
  23. S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
    [CrossRef]
  24. W. Zhao, Z. Hu, V. Lal, L. Rau, and D. J. Blumenthal, “Optimization of Ultra-long MQW Semiconductor Optical Amplifiers for All-optical 40-Gb/s Wavelength Conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CWK5 .
  25. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
    [CrossRef]
  26. C. J. Chang-Hasnain, “Tunable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [CrossRef]

2011 (1)

2010 (2)

U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
[CrossRef]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

2008 (2)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

2007 (2)

2006 (2)

E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
[CrossRef]

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

2005 (1)

2003 (1)

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

2002 (1)

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

2000 (1)

C. J. Chang-Hasnain, “Tunable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

1997 (1)

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

1996 (2)

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
[CrossRef] [PubMed]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

1994 (1)

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

1993 (1)

A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2(3), 211–233 (1993).
[CrossRef]

1978 (2)

1975 (1)

Abe, F.

Baba, T.

E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
[CrossRef]

Bortolozzo1, U.

U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
[CrossRef]

Boyd, R. W.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, “Tunable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

Coldren, L. A.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Corzine, S. W.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Danielsen, S. L.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Daub, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Doussiere, P.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Dudley, C. C.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Fuchida, A.

Fujiura, K.

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

Gauthier, D. J.

Gossard, A. C.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Hansen, P. B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Hu, S. Y.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Hu, W.

Huignard, J.

U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
[CrossRef]

Idler, W.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Iwahashi, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Joergensen, C.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Kloch, A.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Koyama, F.

Krauss, T. F.

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Kunishi, W.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Kurosaka, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Lach, E.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Laube, G.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Law, K. K.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Liang, Y.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Marom, E.

Matsuda, T.

Matsutani, A.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Merz, J. L.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Mikkelsen, B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Miyai, E.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Miyazu, J.

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

Mizuta, E.

E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
[CrossRef]

Nakamura, K.

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Noda, S.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Odoulov, S.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Ohnishi, D.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Podivilov, E.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Pommerau, F.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Poulsen, H. N.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Residori, S.

U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Sakai, K.

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

Sasaura, M.

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

Schilling, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Shi, Z.

Shirasaki, M.

Shumelyuk, A.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Stubkjaer, K. E.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Sturman, B.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Sudbo, A. S.

A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2(3), 211–233 (1993).
[CrossRef]

Takahashi, H.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Vaa, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Watanabe, H.

E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Wunstel, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

Wyant, J. C.

Xiao, F.

Xu, A.

Yariv, A.

Yeh, P.

Young, D. B.

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3,” Appl. Phys. Lett. 89(13), 131115 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-Optical Wavelength Conversion at Bit Rates Above 10 Gb/s Using Semiconductor Optical Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1168–1180 (1997).
[CrossRef]

C. J. Chang-Hasnain, “Tunable VCSELs,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. Y. Hu, S. W. Corzine, K. K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. Mizuta, H. Watanabe, and T. Baba, “All Semiconductor Low-∆ Photonic Crystal Waveguide for Semiconductor Optical Amplifier,” Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006).
[CrossRef]

Laser Photon. Rev. (1)

U. Bortolozzo1, S. Residori, and J. Huignard, “Slow and fast light: basic concepts and recent advancements based on nonlinear wave-mixing processes,” Laser Photon. Rev. 4(4), 483–498 (2010).
[CrossRef]

Nat. Photonics (3)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2(8), 474–481 (2008).
[CrossRef]

Y. Kurosaka, S. Iwahashi, Y. Liang, K. Sakai, E. Miyai, W. Kunishi, D. Ohnishi, and S. Noda, “On-chip beam-steering photonic-crystal lasers,” Nat. Photonics 4(7), 447–450 (2010).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, “Light pulse slowing down up to 0.025 cm/s by photorefractive two-wave coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Prog. Opt. (1)

R. W. Boyd and D. J. Gauthier, ““Slow” and “fast” light,” Prog. Opt. 43, 497–530 (2002).
[CrossRef]

Pure Appl. Opt. (1)

A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2(3), 211–233 (1993).
[CrossRef]

Other (5)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience,1995), Chap. 4.

W. Zhao, Z. Hu, V. Lal, L. Rau, and D. J. Blumenthal, “Optimization of Ultra-long MQW Semiconductor Optical Amplifiers for All-optical 40-Gb/s Wavelength Conversion,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CWK5. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-CWK5 .

T. Shimada and F. Koyama, “Lateral Integration of VCSEL with Slow Light Amplifier/Modulator,” in Proceedings of IEEE Photonics Society, 2010 23rd Annual Meeting, (Institute of Electrical and Electronics Engineers, Denver, 2010), 244–245.

G. Hirano and F. Koyama, “Slowing light in Bragg reflector waveguide with tilt coupling scheme,” presented at 20th Annual Meeting of The IEEE Laser and Electro-Optical Society, LEOS2007, MK1, Florida, U.S.A., 21–25 Oct. 2007.

G. Hirano, F. Koyama, K. Hasebe, T. Sakaguchi, N. Nishiyama, C. Caneau, and C.-E. Zah, “Slow light modulator with Bragg reflector waveguide,” presented at the Optical Fiber Communications Conference, PDP34, Anaheim, California, USA, 25–29 Mar. 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of proposed beam-steering device.

Fig. 2
Fig. 2

Schematic cross-section view of waveguide and as function of wavelength.

Fig. 3
Fig. 3

Propagation constant β and slow-down factor as function of wavelength.

Fig. 4
Fig. 4

Deflection angle for different wavelengths obtained from numerical simulation and analytic formula.

Fig. 5
Fig. 5

Spatial amplitude distributions of electric field by coupling light with different wavelengths.

Fig. 6
Fig. 6

Divergence angle θdiv and the number of resolution-points N as function of the radiation window length L.

Fig. 7
Fig. 7

Divergence angles for 1 mm and 3 mm devices as function of a gain coefficient shortage α in the active region. Different top-mirror designs are compared. The result is for a 970 nm input.

Fig. 8
Fig. 8

(a) Schematic illustration of the beam-steering by fiber coupling. (b) Electric field distribution of the device after coupling. (c) Intensity distribution at the beginning of waveguide surface. Inserted graph shows transition window length as function of λ.

Fig. 9
Fig. 9

The calculated coupling efficiency and device gain as function of wavelength for different amplifier lengths from 50 μm to 1 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ r = n eq ,
n eq n wg = 1 ( λ λ c ) 2 ,
sin θ r = n wg × 1 ( λ λ c ) 2 .

Metrics