Abstract

We report on a bendable photonic crystal fiber for short pulse high power fiber laser applications. This fiber uses a double lattice structure and enables single mode operation with a very large mode area that reaches 1454 µm2 when the fiber is kept straight and 655 µm2 in the fiber bent around a 10 cm radius. Single mode operation is enforced by the very large bending loss in excess of 50 dB/m experienced by the higher order modes, whilst bending loss for the fundamental mode is smaller than 0.01 dB/m. We outline the principles of our fiber design and we explore the guiding properties of the fiber.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13240 .
    [CrossRef] [PubMed]
  2. A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
    [CrossRef]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
    [CrossRef] [PubMed]
  4. T. W. Wu, L. Dong, and H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4278 .
    [CrossRef] [PubMed]
  5. B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8532 .
    [CrossRef] [PubMed]
  6. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1794 .
    [CrossRef] [PubMed]
  7. M. Napierała, T. Nasiłowski, E. Bereś-Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fibre with low bending loss,” Opt. Express 18(15), 15408–15418 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-15-15408 .
    [CrossRef] [PubMed]
  8. http://www.lumerical.com/mode.php .
  9. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3341 .
    [CrossRef] [PubMed]
  10. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [CrossRef]
  11. J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
    [CrossRef] [PubMed]
  12. K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-54 .
    [CrossRef] [PubMed]
  13. M. Y. Chen and Y. K. Zhang, “Bend insensitive design of large-mode-area microstructured optical fibers,” J. Lightwave Technol. 29(15), 2216–2222 (2011).
    [CrossRef]
  14. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 .
    [CrossRef] [PubMed]
  15. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CPDB10.
  16. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-19-1547 .
    [CrossRef] [PubMed]
  17. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2008 (3)

2007 (3)

2006 (3)

2005 (2)

J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
[CrossRef] [PubMed]

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

2004 (1)

1996 (1)

Albin, S.

Atkin, D. M.

Barty, C. P. J.

Beach, R. J.

Beres-Pawlik, E.

Berghmans, F.

Birks, T. A.

Chen, M. Y.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

Dawson, J. W.

Dong, L.

Ermeneux, S.

Fini, J.

Fini, J. M.

Florous, N. J.

Golojuch, G.

Guo, S.

Heebner, J. E.

Höfer, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Knight, J. C.

Koshiba, M.

Liem, A.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Limpert, J.

Martynkien, T.

Messerly, M. J.

Murao, T.

Napierala, M.

Nasilowski, T.

Nolte, S.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Olszewski, J.

Pax, P. H.

Rogowski, R.

Röser, F.

Rothhardt, J.

Russell, P. St. J.

Saitoh, K.

Salin, F.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

Schmidt, O.

Schreiber, T.

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Szpulak, M.

Tai, H.

Thienpont, H.

Tsuchida, Y.

Tünnermann, A.

Urbanczyk, W.

Ward, B. G.

Winful, H.

Wójcik, J.

Wu, F.

Wu, T. W.

Yvernault, P.

Zellmer, H.

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Zhang, Y. K.

IEEE J. Quantum Electron. (1)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. B (1)

A. Tünnermann, T. Schreiber, F. Röser, A. Liem, S. Höfer, H. Zellmer, S. Nolte, and J. Limpert, “The renaissance and bright future of fibre lasers,” J. Phys. B 38(9), S681–S693 (2005).
[CrossRef]

Opt. Express (11)

J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2715 .
[CrossRef] [PubMed]

T. W. Wu, L. Dong, and H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-6-4278 .
[CrossRef] [PubMed]

B. G. Ward, “Bend performance-enhanced photonic crystal fibers with anisotropic numerical aperture,” Opt. Express 16(12), 8532–8548 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8532 .
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1794 .
[CrossRef] [PubMed]

M. Napierała, T. Nasiłowski, E. Bereś-Pawlik, F. Berghmans, J. Wójcik, and H. Thienpont, “Extremely large-mode-area photonic crystal fibre with low bending loss,” Opt. Express 18(15), 15408–15418 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-15-15408 .
[CrossRef] [PubMed]

J. Fini, “Design of solid and microstructure fibers for suppression of higher-order modes,” Opt. Express 13(9), 3477–3490 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-9-3477 .
[CrossRef] [PubMed]

K. Saitoh, N. J. Florous, T. Murao, and M. Koshiba, “Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms,” Opt. Express 14(16), 7342–7352 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-54 .
[CrossRef] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13240 .
[CrossRef] [PubMed]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-15-3341 .
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-69 .
[CrossRef] [PubMed]

T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15(21), 13547–13556 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (2)

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CPDB10.

http://www.lumerical.com/mode.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fiber with double lattice constant structure (DLCF).

Fig. 2
Fig. 2

Bending loss of FM and HOMs as a function of bend radius.

Fig. 3
Fig. 3

The image of the modes propagating in DLCF bent around 10 cm radius.

Fig. 4
Fig. 4

Bending loss of FM and HOMs in DLCF bent around a radius of 10 cm as a function of bend orientation. The inset shows the angle Θ defining the orientation.

Fig. 5
Fig. 5

Comparison of the different LMA fiber families distilled from simulated fibers by interpolating fiber parameters to achieve a common FM bending loss of 0.1 dB/m (adapted from [14]).

Fig. 6
Fig. 6

Scanning electron microscope image of the fabricated DLCF.

Tables (2)

Tables Icon

Table 1 Comparison of DDF and DLCF Parameters

Tables Icon

Table 2 Comparison of Designed and Real DLCF Parameters

Metrics