Abstract

A maximum likelihood sequence detection (MLSD) receiver is used to detect data sequences in single-carrier coherent optical systems in the presence of laser phase noise. It requires no explicit phase estimation and involves only linear operations. It consistently shows improvement in the OSNR penalty (e.g., 1.1 dB at BER = 10−4 with memory length L =3) and the laser linewidth tolerance (e.g., around 4 times that of DAML at 1dB OSNR penalty at BER = 10−4 with memory length L =3) over the well-known DAML and Mth power approaches in laser phase noise (LPN)-impaired coherent optical systems.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  2. Y. Mori, C. Zhang, K. Igarashi, K. Katoh, and K. Kikuchi, “Unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using digital coherent receiver,” Opt. Express 17(3), 1435–1441 (2009).
    [CrossRef] [PubMed]
  3. E. Ip and J. M. Kahn, “Feedforward carrier recovery for coherent optical communications,” J. Lightwave Technol. 25(9), 2675–2692 (2007).
    [CrossRef]
  4. L. M. Pessoa, H. M. Salgado, and I. Darwazeh, “Joint mitigation of optical impairments and phase estimation in coherent optical systems,” in Proceedings of IEEE LEOS Summer Topical Meetings2008, pp. 169–170.
  5. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [CrossRef]
  6. S. Zhang, P. Y. Kam, J. Chen, and C. Yu, “Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system,” Opt. Express 17(2), 703–715 (2009).
    [CrossRef] [PubMed]
  7. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-aided carrier phase estimation for coherent optical communications,” J. Lightwave Technol. 28(11), 1597–1607 (2010).
    [CrossRef]
  8. S. Zhang, P. Y. Kam, and C. Yu, “Block length effect of decision-aided maximum likelihood phase estimation in coherent optical communication systems,” in Proceedings of OSA/CLEO/QELS2009, pp. 1–2, 2–4.
  9. P. Y. Kam, “Maximum likelihood carrier phase recovery for linear suppressed-carrier digital data modulations,” IEEE Trans. Commun. 34(6), 522–527 (1986).
    [CrossRef]
  10. P. Y. Kam, “Maximum-likelihood digital data sequence estimation over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 35(7), 764–767 (1987).
    [CrossRef]
  11. P. Y. Kam and P. Sinha, “A Viterbi-type algorithm for efficient estimation of M-PSK sequences over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 43(9), 2429–2433 (1995).
    [CrossRef]
  12. S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided maximum-likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
    [CrossRef]
  13. M. Seimetz and C.-M. Weinert, “Options, feasibility, and availability of 2 x4 90° hybrids for coherent optical systems,” J. Lightwave Technol. 24(3), 1317–1322 (2006).
    [CrossRef]
  14. K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
    [CrossRef]
  15. Y. Li, P. Y. Kam, and C. C. Chui, “Adaptive sequence detection for MPSK/MQAM with unknown carrier phase characteristics,” in Proceedings of WCNC2009, pp.1–6

2010 (2)

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-aided carrier phase estimation for coherent optical communications,” J. Lightwave Technol. 28(11), 1597–1607 (2010).
[CrossRef]

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided maximum-likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

2006 (2)

1995 (1)

P. Y. Kam and P. Sinha, “A Viterbi-type algorithm for efficient estimation of M-PSK sequences over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 43(9), 2429–2433 (1995).
[CrossRef]

1987 (1)

P. Y. Kam, “Maximum-likelihood digital data sequence estimation over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 35(7), 764–767 (1987).
[CrossRef]

1986 (1)

P. Y. Kam, “Maximum likelihood carrier phase recovery for linear suppressed-carrier digital data modulations,” IEEE Trans. Commun. 34(6), 522–527 (1986).
[CrossRef]

1984 (1)

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[CrossRef]

Barros, D. J. F.

Chen, J.

Henmi, N.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[CrossRef]

Igarashi, K.

Ip, E.

Kahn, J. M.

Kam, P. Y.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided maximum-likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Decision-aided carrier phase estimation for coherent optical communications,” J. Lightwave Technol. 28(11), 1597–1607 (2010).
[CrossRef]

S. Zhang, P. Y. Kam, J. Chen, and C. Yu, “Decision-aided maximum likelihood detection in coherent optical phase-shift-keying system,” Opt. Express 17(2), 703–715 (2009).
[CrossRef] [PubMed]

P. Y. Kam and P. Sinha, “A Viterbi-type algorithm for efficient estimation of M-PSK sequences over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 43(9), 2429–2433 (1995).
[CrossRef]

P. Y. Kam, “Maximum-likelihood digital data sequence estimation over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 35(7), 764–767 (1987).
[CrossRef]

P. Y. Kam, “Maximum likelihood carrier phase recovery for linear suppressed-carrier digital data modulations,” IEEE Trans. Commun. 34(6), 522–527 (1986).
[CrossRef]

Katoh, K.

Kikuchi, K.

Lau, A. P.

Li, X.

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided maximum-likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

Ly-Gagnon, D.-S.

Mori, Y.

Nagamatsu, M.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[CrossRef]

Okoshi, T.

K. Kikuchi, T. Okoshi, M. Nagamatsu, and N. Henmi, “Degradation of bit-error rate in coherent optical communications due to spectral spread of the transmitter and the local oscillator,” J. Lightwave Technol. 2(6), 1024–1033 (1984).
[CrossRef]

Seimetz, M.

Sinha, P.

P. Y. Kam and P. Sinha, “A Viterbi-type algorithm for efficient estimation of M-PSK sequences over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 43(9), 2429–2433 (1995).
[CrossRef]

Tsukamoto, S.

Weinert, C.-M.

Yu, C.

Zhang, C.

Zhang, S.

IEEE Photon. Technol. Lett. (1)

S. Zhang, X. Li, P. Y. Kam, C. Yu, and J. Chen, “Pilot-assisted decision-aided maximum-likelihood phase estimation in coherent optical phase-modulated systems with nonlinear phase noise,” IEEE Photon. Technol. Lett. 22(6), 380–382 (2010).
[CrossRef]

IEEE Trans. Commun. (3)

P. Y. Kam, “Maximum likelihood carrier phase recovery for linear suppressed-carrier digital data modulations,” IEEE Trans. Commun. 34(6), 522–527 (1986).
[CrossRef]

P. Y. Kam, “Maximum-likelihood digital data sequence estimation over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 35(7), 764–767 (1987).
[CrossRef]

P. Y. Kam and P. Sinha, “A Viterbi-type algorithm for efficient estimation of M-PSK sequences over the Gaussian channel with unknown carrier phase,” IEEE Trans. Commun. 43(9), 2429–2433 (1995).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (3)

Other (3)

L. M. Pessoa, H. M. Salgado, and I. Darwazeh, “Joint mitigation of optical impairments and phase estimation in coherent optical systems,” in Proceedings of IEEE LEOS Summer Topical Meetings2008, pp. 169–170.

S. Zhang, P. Y. Kam, and C. Yu, “Block length effect of decision-aided maximum likelihood phase estimation in coherent optical communication systems,” in Proceedings of OSA/CLEO/QELS2009, pp. 1–2, 2–4.

Y. Li, P. Y. Kam, and C. C. Chui, “Adaptive sequence detection for MPSK/MQAM with unknown carrier phase characteristics,” in Proceedings of WCNC2009, pp.1–6

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System setup of QPSK (differentially pre-coded) coherent optical transmission system.

Fig. 2
Fig. 2

Uncoded QPSK sequence—trellis representation.

Fig. 3
Fig. 3

Constellation of received QPSK (differentially pre-coded) signals @ L = 3, SNR/bit = 11dB, D = 100 (a) actual received signals; (b) without LPN; (c) after DAML; (d) after MLSD.

Fig. 4
Fig. 4

BER comparison of MLSD vs. DAML vs. Mth Power, where D = 100, LLW = 20MHz.

Fig. 6
Fig. 6

OSNR penalties and LLW tolerance comparison: MLSD vs. DAML vs. Mth Power, L = 3 and L=5.

Fig. 5
Fig. 5

Subsequence length effects of MLSD at LLW = 10MHz.

Tables (1)

Tables Icon

Table 1 Complexity Comparison among MLSD, DAML and Mth Power

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r( k )= i I ( k )+j. i Q ( k )+n( k )=s( k ) e jθ( k ) +n( k )
μ QPSK ( k,s( k ) )= μ QPSK ( k1,s( k1 ) )+( 1/L E s )Re[ r( k ) s * ( k ) i=kL k1 r( i ) s * ( i ) ]

Metrics