Abstract

We have performed three-dimensional characterization of the TPA effective laser spot size in silicon using an integrated knife-edge sensor. The TPA-induced response of a CMOS integrated circuit is analyzed based on these results and compared to simulation; we have found that the charge injection capacity in IC’s active layer could be influenced by irradiance energy and focus depth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. C. Xu and W. Denk, “Two photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71(18), 2578–2580 (1997).
    [CrossRef]
  3. K. A. Serrels and D. T. Reid, “Two-photon X-Variation mapping based on a diode-pumped femtosecond laser,” in 36th International Symposium for Testing and Failure Analysis (2010), pp. 14–19.
  4. D. McMorrow, W. Lotshaw, J. Melinger, and J. Pellish, “Single-event effects in microelectronics induced by through-wafer sub-bandgap two-photon absorption,” in Non Linear Optics Conference (2009).
  5. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  6. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  7. W. T. Lotshaw, D. McMorrow, and J. S. Melinger, “Measurement of nonlinear absorption and refraction in doped Si below the band edge,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), paper WE10.
  8. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, “Influence of nonlinear absorption on Raman amplification in silicon waveguides,” Opt. Express 12(12), 2774–2780 (2004).
    [CrossRef] [PubMed]
  9. A. H. Firester, M. E. Heller, and P. Sheng, “Knife-edge scanning measurements of subwavelength focused light beams,” Appl. Opt. 16(7), 1971–1974 (1977).
    [CrossRef] [PubMed]
  10. E. Faraud, V. Pouget, K. Shao, C. Larue, F. Darracq, D. Lewis, A. Samaras, F. Bezerra, E. Lorfevre, and R. Ecoffet, “Investigation on the SEL sensitive depth of an SRAM using linear and two-photon absorption laser testing,” accepted for presentation at IEEE Nuclear and Space Radiation Effects Conference (NSREC), Las Vegas, July 25–29, 2011.
  11. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [CrossRef]
  12. T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
    [CrossRef]
  13. A. Douin, V. Pouget, D. Lewis, P. Fouillat, and P. Perdu, “Picosecond timing analysis in integrated circuits with pulsed laser stimulation,” in Proceedings of the 45th Annual IEEE International Reliability Physics Symposium (IEEE, 2007), pp. 520–525.

2004

1997

C. Xu and W. Denk, “Two photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71(18), 2578–2580 (1997).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1987

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

1986

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

1977

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Boggess, T.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Bohnert, K.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Boyd, I.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Claps, R.

Denk, W.

C. Xu and W. Denk, “Two photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71(18), 2578–2580 (1997).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dimitropoulos, D.

Firester, A. H.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Heller, M. E.

Jalali, B.

Mansour, K.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Moss, S.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Raghunathan, V.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Sheng, P.

Smirl, A.

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Van Stryland, W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

Xu, C.

C. Xu and W. Denk, “Two photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71(18), 2578–2580 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Xu and W. Denk, “Two photon optical beam induced current imaging through the backside of integrated circuits,” Appl. Phys. Lett. 71(18), 2578–2580 (1997).
[CrossRef]

IEEE J. Quantum Electron.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[CrossRef]

T. Boggess, K. Bohnert, K. Mansour, S. Moss, I. Boyd, and A. Smirl, “Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon,” IEEE J. Quantum Electron. 22(2), 360–368 (1986).
[CrossRef]

Opt. Express

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

E. Faraud, V. Pouget, K. Shao, C. Larue, F. Darracq, D. Lewis, A. Samaras, F. Bezerra, E. Lorfevre, and R. Ecoffet, “Investigation on the SEL sensitive depth of an SRAM using linear and two-photon absorption laser testing,” accepted for presentation at IEEE Nuclear and Space Radiation Effects Conference (NSREC), Las Vegas, July 25–29, 2011.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

W. T. Lotshaw, D. McMorrow, and J. S. Melinger, “Measurement of nonlinear absorption and refraction in doped Si below the band edge,” in Nonlinear Optics: Materials, Fundamentals and Applications (Optical Society of America, 2007), paper WE10.

K. A. Serrels and D. T. Reid, “Two-photon X-Variation mapping based on a diode-pumped femtosecond laser,” in 36th International Symposium for Testing and Failure Analysis (2010), pp. 14–19.

D. McMorrow, W. Lotshaw, J. Melinger, and J. Pellish, “Single-event effects in microelectronics induced by through-wafer sub-bandgap two-photon absorption,” in Non Linear Optics Conference (2009).

A. Douin, V. Pouget, D. Lewis, P. Fouillat, and P. Perdu, “Picosecond timing analysis in integrated circuits with pulsed laser stimulation,” in Proceedings of the 45th Annual IEEE International Reliability Physics Symposium (IEEE, 2007), pp. 520–525.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Refraction index modification at 100pJ (left) and 750pJ (right) induced by Kerr and plasma effects (ΔnTotal = ΔnKerr + ΔnFC).

Fig. 2
Fig. 2

(a) Front side knife-edge characterization of the TPA-effective laser spot size schematic and scan principles; (b) collected charge vs. scan position for different pulse energies; (c) TPA-effective laser spot profiles derived from (b).

Fig. 3
Fig. 3

(left) TPA-effective spot profile along Z for different energies; (right) TPA-effective spot profile along X at minimum width and peak spot.

Fig. 4
Fig. 4

TPA TRLS (Time Resolved Laser Scanning [13]) mappings for TPA sensitivity test: (left) optimal position and laser energy; (middle) result obtained when only moving the device 2µm away from the optimal focus position; (right) result with 10% energy increase from the 2µm shifted position.

Fig. 5
Fig. 5

Measured (solid line) and simulated (dash line) axial extension of the sensitive volume.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P= ε 0 ( χ (1) E ω + χ (2) E ω E ω + χ (3) E ω E ω E ω +... )
dI(t,z) dz =αI(t,z)β I 2 (t,z) σ FC N(t,z)I(t,z)
dN(t) dt = β 2hν I 2 (t)- N(t) τ
Δ n FC =( 6.2× 10 22 Δ N e +6.0× 10 18 Δ N h 0.8 )

Metrics