Abstract

We proposed a method to determine device quality in heat removal. Temperature change depending on SH power was analyzed by fitting with a new model to characterize heat removal performance of SHG modules, named as phase-matched calorimetry (PMC). The thermal disposal performance of SHG devices was improved by combination of metal housing and reduced crystal aperture. With a tight aperture, we demonstrated a 19 W single-pass 532-nm SHG at a conversion efficiency of 26.5% in a 10-mm-long PPMgSLT crystal without saturation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
    [CrossRef]
  2. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
    [CrossRef]
  3. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
    [CrossRef]
  4. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [CrossRef] [PubMed]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
    [CrossRef]
  6. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
    [CrossRef] [PubMed]
  7. P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
    [CrossRef]
  8. O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
    [CrossRef]
  9. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [CrossRef]
  10. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
    [CrossRef]
  11. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
    [CrossRef]
  12. N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
    [CrossRef] [PubMed]

2010 (2)

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
[CrossRef] [PubMed]

2009 (1)

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

2008 (2)

2007 (2)

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

2006 (1)

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

2005 (2)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

2004 (1)

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

2003 (1)

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Alexandrovski, A.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Blau, P.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Bruner, A.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Byer, R. L.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Devi, K.

Digonnet, M. J. F.

Ebrahim-Zadeh, M.

Eger, D.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Englander, A.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Huang, J.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Hum, D. S.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Katagai, T.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Kondilenko, V.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Kumar, S. C.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Lee, Y.

Louchev, O. A.

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

Miller, G. D.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Mio, N.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Moriwaki, S.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Ohmae, N.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Pearl, S.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Route, R. K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Samanta, G. K.

Sinha, S.

Suzuki, I.

Takeno, K.

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

Urbanek, K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Urbanek, K. E.

Wada, S.

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

J. Appl. Phys. (3)

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (1)

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SHG temperature tuning curves for a 20 mm-long PPMgSLT device with a QPM period of 8.4 μm.

Fig. 2
Fig. 2

(Left): SH Power versus FH power for a 10 mm long crystal with a QPM period of 8.4 μm, quadratically fitted to determine ηnorm. (Right): TEC temperature versus SH power, fitted with Eq. (3).

Fig. 3
Fig. 3

TEC temperature versus SH power for (a): 0.3 mm and 0.4 mm width configuration for QPM period, Λ = 8.4 μm, ξ = 2.73, L = 10 mm, (b): 0.3 mm and 0.4 mm width configuration for Λ = 8.4 μm, ξ = 1.90, L = 10 mm, (c): 0.3 mm and 0.5 mm width configuration for Λ = 8.4 μm, ξ = 0.75, L = 20 mm. (d): normalized relative heat capacities versus crystal widths of 0.3, 0.4 and 0.5 mm.

Fig. 4
Fig. 4

CW 532 nm green SH power and conversion efficiency for a 10 mm long crystal versus fundamental power. Solid line: Tanh2 dependence of SH power. Inset: TEC temperature of the used module versus SH power fitted by Eq. (3), result in the heat capacity value as 18.8 W/°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T crystal = 1 C Q= 1 C ( α FH P FH A FH + α SH P SH A SH )
Δ T crystal = α SH CA ( R P FH + P SH )
T TEC = T 0 1 C α ( R P SH η norm + P SH )

Metrics