Abstract

We proposed a method to determine device quality in heat removal. Temperature change depending on SH power was analyzed by fitting with a new model to characterize heat removal performance of SHG modules, named as phase-matched calorimetry (PMC). The thermal disposal performance of SHG devices was improved by combination of metal housing and reduced crystal aperture. With a tight aperture, we demonstrated a 19 W single-pass 532-nm SHG at a conversion efficiency of 26.5% in a 10-mm-long PPMgSLT crystal without saturation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
    [CrossRef]
  2. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
    [CrossRef]
  3. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
    [CrossRef]
  4. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
    [CrossRef] [PubMed]
  5. S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
    [CrossRef]
  6. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
    [CrossRef] [PubMed]
  7. P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
    [CrossRef]
  8. O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
    [CrossRef]
  9. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
    [CrossRef]
  10. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
    [CrossRef]
  11. D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
    [CrossRef]
  12. N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
    [CrossRef] [PubMed]

2010

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35(20), 3513–3515 (2010).
[CrossRef] [PubMed]

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

2009

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

2008

2007

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

2006

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

2005

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

2004

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

2003

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Alexandrovski, A.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Blau, P.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Bruner, A.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Byer, R. L.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Devi, K.

Digonnet, M. J. F.

Ebrahim-Zadeh, M.

Eger, D.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Englander, A.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Fejer, M. M.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Huang, J.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Hum, D. S.

S. Sinha, D. S. Hum, K. E. Urbanek, Y. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, “Room-temperature stable generation of 19 watts of single-frequency 532-nm radiation in a periodically poled lithium tantalate crystal,” J. Lightwave Technol. 26(24), 3866–3871 (2008).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Katagai, T.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Kondilenko, V.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Kumar, S. C.

Kurimura, S.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Lee, Y.

Louchev, O. A.

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

Miller, G. D.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Mio, N.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Moriwaki, S.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Ohmae, N.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

Pearl, S.

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Route, R. K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Samanta, G. K.

Sinha, S.

Suzuki, I.

Takeno, K.

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16(15), 11294–11299 (2008).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

Urbanek, K.

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

Urbanek, K. E.

Wada, S.

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

Yu, N. E.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

Appl. Phys. Lett.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87(13), 131101 (2005).
[CrossRef]

J. Appl. Phys.

O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Nanosecond pulsed laser energy and thermal field evolution during second harmonic generation in periodically poled LiNbO3 crystals,” J. Appl. Phys. 98(11), 113103 (2005).
[CrossRef]

D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang, K. Urbanek, R. L. Byer, and M. M. Fejer, “Optical properties and ferroelectric engineering of vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion,” J. Appl. Phys. 101(9), 093108 (2007).
[CrossRef]

O. A. Louchev and S. Wada, “Numerical model and study of cascaded third harmonic generation in two-sectioned a periodically poled Mg-doped LiTaO3 structure,” J. Appl. Phys. 106(9), 093106 (2009).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

N. E. Yu, S. Kurimura, Y. Nomura, and K. Kitamura, “Stable high-power green light generation with thermally conductive periodically poled stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 43(No. 10A), L1265–L1267 (2004).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “Continuous-wave 2W green light generation in periodically poled Mg-doped stoichiometric lithium tantalate,” Jpn. J. Appl. Phys. 45(34), L907–L909 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. Blau, S. Pearl, A. Englander, A. Bruner, and D. Eger, “Average power effects in periodically poled crystals,” Proc. SPIE 4972, 34–41 (2003).
[CrossRef]

Rev. Sci. Instrum.

N. Ohmae, S. Moriwaki, and N. Mio, “Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors,” Rev. Sci. Instrum. 81(7), 073105 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SHG temperature tuning curves for a 20 mm-long PPMgSLT device with a QPM period of 8.4 μm.

Fig. 2
Fig. 2

(Left): SH Power versus FH power for a 10 mm long crystal with a QPM period of 8.4 μm, quadratically fitted to determine ηnorm. (Right): TEC temperature versus SH power, fitted with Eq. (3).

Fig. 3
Fig. 3

TEC temperature versus SH power for (a): 0.3 mm and 0.4 mm width configuration for QPM period, Λ = 8.4 μm, ξ = 2.73, L = 10 mm, (b): 0.3 mm and 0.4 mm width configuration for Λ = 8.4 μm, ξ = 1.90, L = 10 mm, (c): 0.3 mm and 0.5 mm width configuration for Λ = 8.4 μm, ξ = 0.75, L = 20 mm. (d): normalized relative heat capacities versus crystal widths of 0.3, 0.4 and 0.5 mm.

Fig. 4
Fig. 4

CW 532 nm green SH power and conversion efficiency for a 10 mm long crystal versus fundamental power. Solid line: Tanh2 dependence of SH power. Inset: TEC temperature of the used module versus SH power fitted by Eq. (3), result in the heat capacity value as 18.8 W/°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T crystal = 1 C Q= 1 C ( α FH P FH A FH + α SH P SH A SH )
Δ T crystal = α SH CA ( R P FH + P SH )
T TEC = T 0 1 C α ( R P SH η norm + P SH )

Metrics