Abstract

We report on continuous-wave sum and difference frequency generation in selectively oxidized AlGaAs waveguides designed for degenerate spontaneous parametric down-conversion at 1.55 μm. Sum frequency generation with two pumps around this wavelength is observed with a conversion efficiency η = 1080%W−1cm−2. Difference frequency generation is also performed near degeneracy, with an external conversion efficiency ηext = 9.7%W−1cm−2 and a tunability of 570 nm. These results are promising for the feasibility of an integrated telecom source based on parametric fluorescence.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bijlani, P. Abolghasem, and A. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.
  2. C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
    [CrossRef] [PubMed]
  3. X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 µm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13(26), 10742–10748 (2005).
    [CrossRef] [PubMed]
  4. V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
    [CrossRef]
  5. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21(19), 1462–1464 (2009).
    [CrossRef]
  6. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34(23), 3656–3658 (2009).
    [CrossRef] [PubMed]
  7. J. Han, D. P. Kang, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Pulsed- and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides,” J. Opt. Soc. Am. B 27(12), 2488–2494 (2010).
    [CrossRef]
  8. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
    [CrossRef]
  9. M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 36(15), 2955–2957 (2011).
    [CrossRef] [PubMed]
  10. A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
    [CrossRef]
  11. J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
    [CrossRef]
  12. R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).
  13. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
    [CrossRef]

2011 (1)

2010 (2)

J. Han, D. P. Kang, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Pulsed- and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides,” J. Opt. Soc. Am. B 27(12), 2488–2494 (2010).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

2009 (4)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21(19), 1462–1464 (2009).
[CrossRef]

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34(23), 3656–3658 (2009).
[CrossRef] [PubMed]

2005 (2)

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

X. Yu, L. Scaccabarozzi, J. S. Harris, P. S. Kuo, and M. M. Fejer, “Efficient continuous wave second harmonic generation pumped at 1.55 µm in quasi-phase-matched AlGaAs waveguides,” Opt. Express 13(26), 10742–10748 (2005).
[CrossRef] [PubMed]

1998 (2)

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Abolghasem, P.

Andronico, A.

Arjmand, A.

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21(19), 1462–1464 (2009).
[CrossRef]

Berger, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

Bijlani, B. J.

Bravetti, P.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Calligaro, M.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

De Rossi, A.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Delobel, L.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Ducci, S.

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Farrer, I.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Favero, I.

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Fejer, M. M.

Fiore, A.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Galopin, E.

Ghiglieno, F.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Guillotel, E.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Han, J.

Harris, J. S.

Helmy, A. S.

Janz, S.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Kang, D. P.

Kondo, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Kuo, P. S.

Lanco, L.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Langlois, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Lemaître, A.

Leo, G.

M. Savanier, A. Andronico, A. Lemaître, E. Galopin, C. Manquest, I. Favero, S. Ducci, and G. Leo, “Large second-harmonic generation at 1.55 μm in oxidized AlGaAs waveguides,” Opt. Lett. 36(15), 2955–2957 (2011).
[CrossRef] [PubMed]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Manquest, C.

Matsushita, T.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Nagle, J.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

Narita, W.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Nicoll, C. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Ohta, I.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Ortiz, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Ota, J.

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Ravaro, M.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Ricolleau, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

Ritchie, D. A.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Rosencher, E.

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Sagnes, I.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

Salter, C. L.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Savanier, M.

Scaccabarozzi, L.

Shields, A. J.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Stevenson, R. M.

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

van der Meer, P.

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

Yu, X.

Appl. Phys. Lett. (2)

A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, E. Rosencher, and J. Nagle, “Second-harmonic generation at λ = 1.6 μm in AlGaAs/Al2O3 waveguides using birefringence phase matching,” Appl. Phys. Lett. 72(23), 2942–2944 (1998).
[CrossRef]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94(17), 171110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1-xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21(19), 1462–1464 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97(7), 073105 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J. Ota, W. Narita, I. Ohta, T. Matsushita, and T. Kondo, “Fabrication of periodically-inverted AlGaAs waveguides for quasi-phase-matched wavelength conversion at 1.55 μm,” Jpn. J. Appl. Phys. 48(4), 04C110 (2009).
[CrossRef]

Nature (2)

V. Berger, A. Fiore, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic non linear optical material,” Nature 391(6666), 463–466 (1998).
[CrossRef]

C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature 465(7298), 594–597 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

B. Bijlani, P. Abolghasem, and A. Helmy, “Intracavity parametric fluorescence in diode lasers,” in CLEO:2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPA3.

R. L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Propagation losses vs. wavelength, fitted by the decaying exponential exp[-λ/76.2] (the inverse-power law λ-1.6) for short (long) wavelengths, respectively.

Fig. 2
Fig. 2

a) SF power vs. P2 wavelength: experimental data (dots), theoretical fit (thin line) after [11], and extracted single-pass PM curve (thick line). b) Single-pass SF power at PM vs. P1 power.

Fig. 3
Fig. 3

Schematic DFG setup: FI, Faraday Isolator; FPC, fiber polarization controller; M, mirror; FM, flip mirror; L, lens; λ/2, half-wave plate; BS, beam splitter; PD, photodiode; C, chopper.

Fig. 4
Fig. 4

a) Normalized power spectral density measured at the waveguide output facet. The DF (seed) peak appears at 1534.0 nm (1559.0 nm). The central peak at 1546.4 nm is the residual 2nd-order diffraction of the pump. b) External DF-to-seed power ratio vs. external pump power: measured values and linear fit.

Fig. 5
Fig. 5

a) Normalized DF spectra for three different seed wavelengths (the seed peaks are slightly clipped due to the lock-in finite dynamic range). b) Tuning curve: experimental data (dots) and theoretical prediction (dashes-dots).

Metrics