Abstract

Both analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  3. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [CrossRef] [PubMed]
  4. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tünnermann, “Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers,” Opt. Lett. 35(17), 2982–2984 (2010).
    [CrossRef] [PubMed]
  5. P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
    [CrossRef]
  6. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
    [CrossRef] [PubMed]
  7. L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005).
    [CrossRef] [PubMed]
  8. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006).
    [CrossRef] [PubMed]
  9. T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in European Conference and Exhibition on Optical Communication 2007, Berlin (Sep. 2007), paper 7.1.1.
  10. G. P. Algrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  11. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).
  12. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006).
    [CrossRef] [PubMed]
  13. X. Ma, “Understanding and controlling angular momentum coupled optical waves in chirally coupled core fibers,” PhD thesis.
  14. X. Ma, C.-H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” (submitted to Opt. Express).

2010

2006

2005

L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005).
[CrossRef] [PubMed]

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

2004

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

1972

Andrejco, M. J.

Benabid, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Bise, R. T.

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Chen, X.

Clarkson, W. A.

Codemard, C.

Couny, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Crowley, A.

Dragic, P. D.

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

Dupriez, P.

Fini, J. M.

Gray, S.

Jansen, F.

Jauregui, C.

Kim, J.

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Li, M. J.

Limpert, J.

Mermelstein, M. D.

Nilsson, J.

Nodop, D.

Richardson, D. J.

Ruffin, B. A.

Russell, P. St. J.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Sahu, J. K.

Smith, R. G.

Tünnermann, A.

Walton, D. T.

Wang, J.

Wisk, P. W.

Yablon, A. D.

Yan, M. F.

Zenteno, L. A.

Appl. Opt.

J. Opt. Soc. Am. B

Opt. Commun.

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Other

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in European Conference and Exhibition on Optical Communication 2007, Berlin (Sep. 2007), paper 7.1.1.

G. P. Algrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).

X. Ma, “Understanding and controlling angular momentum coupled optical waves in chirally coupled core fibers,” PhD thesis.

X. Ma, C.-H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” (submitted to Opt. Express).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics