Abstract

Both analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [CrossRef]
  3. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [CrossRef] [PubMed]
  4. D. Nodop, C. Jauregui, F. Jansen, J. Limpert, and A. Tünnermann, “Suppression of stimulated Raman scattering employing long period gratings in double-clad fiber amplifiers,” Opt. Lett. 35(17), 2982–2984 (2010).
    [CrossRef] [PubMed]
  5. P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
    [CrossRef]
  6. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off,” Opt. Express 14(12), 5103–5113 (2006).
    [CrossRef] [PubMed]
  7. L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005).
    [CrossRef] [PubMed]
  8. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006).
    [CrossRef] [PubMed]
  9. T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in European Conference and Exhibition on Optical Communication 2007, Berlin (Sep. 2007), paper 7.1.1.
  10. G. P. Algrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  11. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).
  12. J. M. Fini, M. D. Mermelstein, M. F. Yan, R. T. Bise, A. D. Yablon, P. W. Wisk, and M. J. Andrejco, “Distributed suppression of stimulated Raman scattering in an Yb-doped filter-fiber amplifier,” Opt. Lett. 31(17), 2550–2552 (2006).
    [CrossRef] [PubMed]
  13. X. Ma, “Understanding and controlling angular momentum coupled optical waves in chirally coupled core fibers,” PhD thesis.
  14. X. Ma, C.-H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” (submitted to Opt. Express).

2010 (2)

2006 (3)

2005 (2)

L. A. Zenteno, J. Wang, D. T. Walton, B. A. Ruffin, M. J. Li, S. Gray, A. Crowley, and X. Chen, “Suppression of Raman gain in single-transverse-mode dual-hole-assisted fiber,” Opt. Express 13(22), 8921–8926 (2005).
[CrossRef] [PubMed]

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

2004 (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

1972 (1)

Andrejco, M. J.

Benabid, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Bise, R. T.

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Chen, X.

Clarkson, W. A.

Codemard, C.

Couny, F.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Crowley, A.

Dragic, P. D.

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

Dupriez, P.

Fini, J. M.

Gray, S.

Jansen, F.

Jauregui, C.

Kim, J.

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Li, M. J.

Limpert, J.

Mermelstein, M. D.

Nilsson, J.

Nodop, D.

Richardson, D. J.

Ruffin, B. A.

Russell, P. St. J.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Sahu, J. K.

Smith, R. G.

Tünnermann, A.

Walton, D. T.

Wang, J.

Wisk, P. W.

Yablon, A. D.

Yan, M. F.

Zenteno, L. A.

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. D. Dragic, “Suppression of first order stimulated Raman scattering in erbium-doped fiber laser based LIDAR transmitters through induced bending loss,” Opt. Commun. 250(4-6), 403–410 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef] [PubMed]

Other (5)

X. Ma, “Understanding and controlling angular momentum coupled optical waves in chirally coupled core fibers,” PhD thesis.

X. Ma, C.-H. Liu, G. Chang, and A. Galvanauskas, “Angular-momentum coupled optical waves in chirally-coupled-core fibers,” (submitted to Opt. Express).

T. Taru, J. Hou, and J. C. Knight, “Raman gain suppression in all-solid photonic bandgap fiber,” in European Conference and Exhibition on Optical Communication 2007, Berlin (Sep. 2007), paper 7.1.1.

G. P. Algrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The dB-scale of SRS threshold dependence of fiber length for 30μm 0.06NA step-index fibers is plotted. The blue line overlapped with circles, the red line overlapped with squares, the purple line overlapped with triangles, and the cyan line overlapped with diamonds correspond to 0, 1, 15, 40, and 100 dB/m of Stokes suppression respectively. The lines and the symbol points are representing the results from analytical equation and numerical simulation respectively. On the left-down corner, the Raman Stokes gain spectrum of fused silica is shown with a blue curve, while the flattop suppression levels of 1, 15, 40, and 100 dB/m are also shown in the same graph.

Fig. 2
Fig. 2

The wavelength range at 1085nm~1245nm of one CCC fiber sample’s transmission spectrum with red solid line and vertical axis on the right is shown to match the Raman Stokes gain of pump wavelength at 1085nm which is plotted as a function of wavelength with blue solid line and vertical axis on the left. The broader transmission spectrum of the same CCC fiber sample is shown in the up-right-corner inset.

Fig. 3
Fig. 3

The numerical simulation of SRS threshold with Raman Stokes gain profile and CCC Stokes suppression profile is shown with cyan square symbols. For comparison, the numerical simulation results for the case of no stokes suppression with blue solid line and the case of 15 dB/m flat suppression with red solid line are also shown in the same graph.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P s (L) P s (0)exp[ P p g 0 L/ A eff ],
P s (0)exp[ α s L+ P cr g 0 L/ A eff ]= P cr exp[ α p L],
P cr 16 A eff g 0 L eff ,
P cr 30 A eff g 0 L eff .
P cr 30 A eff g 0 L + Δ α s A eff g 0 .
P cr | L Δ α s A eff g 0 .
P s (0)exp[Δ α s L+ P cr g 0 L/ A eff ]= P cr .
{ d I p dz = ω p ω s g R (Ω) I p I s , d I s dz = g R (Ω) I p I s α s I s ,

Metrics