Abstract

Although it is well accepted that the ultrafast manipulation of spins or magnetization in solid promises potential applications in coherent terahertz (THz) radiation source, spintronics and quantum information processing, their performance is significantly limited by the weak coupling between radiation field and magnetic dipole oscillation. For such ‘weak’ magnetic system, we propose an effective and simple route based on the cavity-based phase modulation technique towards the efficient energy extraction, demonstrated via controlling the magnetic dipole THz radiation generated in the nonlinear Raman process from antiferromagnetic (AFM) NiO. An asymmetric coupled Fabry-Pérot (FP) cavity is constituted by simply placing a metallic planar mirror in the vicinity of a NiO slab. The energy-extraction (THz radiation) can be effectively manipulated by changing the NiO-mirror distance to modulate the phase relation between the magnetic wave and the induced magnetization in NiO. The distinct radiation control can be observed and the experiments are well explained by numerically analyzing the radiation dynamics that highlights the role of phase modulation during the radiation process.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
    [CrossRef] [PubMed]
  2. F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
    [CrossRef]
  3. J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009).
    [CrossRef]
  4. N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
    [CrossRef] [PubMed]
  5. J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
    [CrossRef]
  6. T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
    [CrossRef] [PubMed]
  7. J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
    [CrossRef]
  8. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
    [CrossRef]
  9. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
    [CrossRef] [PubMed]
  10. K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory (Springer, 2010).
  11. J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).
  12. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  13. J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
    [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  15. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
    [CrossRef] [PubMed]
  16. S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
    [CrossRef]
  17. K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
    [CrossRef] [PubMed]
  18. H. Shirai, E. Kishimoto, T. Kokuhata, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, M. Hangyo, T. G. Kim, and N. Tsurumachi, “Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal,” Appl. Opt. 48(36), 6934–6939 (2009).
    [CrossRef] [PubMed]
  19. Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
    [CrossRef]
  20. M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972).
    [CrossRef]

2011

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

2010

J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
[CrossRef]

2009

2006

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

K. Suizu, Y. Suzuki, Y. Sasaki, H. Ito, and Y. Avetisyan, “Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves,” Opt. Lett. 31(7), 957–959 (2006).
[CrossRef] [PubMed]

2005

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

2004

N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
[CrossRef] [PubMed]

2003

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

1997

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

1996

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

1975

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[CrossRef]

1972

M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Avetisyan, Y.

Backus, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Bartels, R. A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Beaurepaire, E.

J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009).
[CrossRef]

Bigot, J.-Y.

J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Christov, I. P.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Dekorsy, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Duong, N. P.

N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
[CrossRef] [PubMed]

Fiebig, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
[CrossRef] [PubMed]

Green, H.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Hangyo, M.

Hansteen, F.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

Hashimoto, Y.

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

Héroux, J. B.

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

Higuchi, T.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Huber, R.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Hutchings, M. T.

M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972).
[CrossRef]

Ino, Y.

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

Ito, H.

Itoh, H.

Kampfrath, T.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Kanda, N.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Kapteyn, H. C.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Katsumoto, S.

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

Kim, T. G.

Kimel, A.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

Kimel, A. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Kirilyuk, A.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Kishimoto, E.

Klatt, G.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Kokuhata, T.

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Koshiba, S.

Kozuki, K.

J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
[CrossRef]

Kuwata-Gonokami, M.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

Leitenstorfer, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Mährlein, S.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Ming, N.-B.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Miyagawa, H.

Murnane, M. M.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Nagashima, T.

J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
[CrossRef]

Nakanishi, S.

Nishitani, J.

J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
[CrossRef]

Pashkin, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Paul, A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Pisarev, R. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Rasing, T.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

Rasing, Th.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Samuelsen, E. J.

M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972).
[CrossRef]

Sasaki, Y.

Satoh, T.

N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
[CrossRef] [PubMed]

Sell, A.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Shirai, H.

Suizu, K.

Suzuki, Y.

Tamaru, H.

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Tobey, R.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Tsurumachi, N.

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

van der Ziel, J. P.

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[CrossRef]

Vomir, M.

J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009).
[CrossRef]

Weiman, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Wolf, M.

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Wu, Q.

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Zhang, X. C.

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

Zhu, S.-N.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Zhu, Y.-Y.

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[CrossRef]

J. B. Héroux, Y. Ino, M. Kuwata-Gonokami, Y. Hashimoto, and S. Katsumoto, “Terahertz radiation emission from GaMnAs,” Appl. Phys. Lett. 88(22), 221110 (2006).
[CrossRef]

J. Nishitani, K. Kozuki, T. Nagashima, and M. Hangyo, “Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses,” Appl. Phys. Lett. 96(22), 221906 (2010).
[CrossRef]

J. P. van der Ziel, “Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers,” Appl. Phys. Lett. 26(2), 60–61 (1975).
[CrossRef]

Nat Commun.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun. 2, 362 (2011).
[CrossRef] [PubMed]

Nat. Photonics

T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, M. Wolf, M. Fiebig, A. Leitenstorfer, and R. Huber, “Coherent terahertz control of antiferromagnetic spin waves,” Nat. Photonics 5(1), 31–34 (2011).
[CrossRef]

Nat. Phys.

J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys. 5(7), 515–520 (2009).
[CrossRef]

Nature

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and Th. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421(6918), 51–54 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. B

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Nonthermal ultrafast optical control of the magnetization in garnet films,” Phys. Rev. B 73(1), 014421 (2006).
[CrossRef]

M. T. Hutchings and E. J. Samuelsen, “Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties,” Phys. Rev. B 6(9), 3447–3461 (1972).
[CrossRef]

Phys. Rev. Lett.

N. P. Duong, T. Satoh, and M. Fiebig, “Ultrafast manipulation of antiferromagnetism of NiO,” Phys. Rev. Lett. 93(11), 117402 (2004).
[CrossRef] [PubMed]

T. Higuchi, N. Kanda, H. Tamaru, and M. Kuwata-Gonokami, “Selection rules for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO,” Phys. Rev. Lett. 106(4), 047401 (2011).
[CrossRef] [PubMed]

Science

S.-N. Zhu, Y.-Y. Zhu, and N.-B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Other

K. Cho, Reconstruction of Macroscopic Maxwell Equations: A Single Susceptibility Theory (Springer, 2010).

J. D. Jackson, Classical Electrodynamics, 3rd ed. (John Wiley & Sons, 1998).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the setup for detecting the THz radiation. (b) Schematic of the asymmetric Fabry-Pérot cavity with the tunable distance between NiO and silver mirror; z=z0 is the NiO/air boundary where THz waves emit into free space. (c) Measured time-domain waveform of the radiated THz electric field at different distances of the mirror, forward-radiation of the bare NiO is also plotted for the comparison. The time dependences are vertically shifted for better clarity. (d) Frequency-domain radiation spectra with the various NiO-mirror distances, normalized by the radiation spectrum of bare NiO. Green arrows denote the radiation enhancement when cavity modes overlap with the magnetic resonance of NiO.

Fig. 2
Fig. 2

(a) Time- and (b) frequency-domain radiation spectra calculated by FDTD analysis.

Fig. 3
Fig. 3

Temporal spectra lines of magnetic field (B), magnetization (M) and (H) at NiO boundary with the NiO-mirror distances of 114µm and 156 µm.

Fig. 4
Fig. 4

(a) Analytical calculation of on- and off-resonance conditions of the coupled FP cavity. This calculation is performed with the assumption that the permeability of NiO equal to 1. (b) FDTD calculation of the radiation intensity as the function of slab thickness and the NiO-mirror distance, normalized by the intensity of 100 μm thick NiO. (c) Normalized radiation intensity extracted from the best and worst cavity structures at different crystal thickness, forward and backward radiation from bare crystals are also plotted for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

t εE=×[ 1 μ 0 BM ] ,
t B=×E,
[ 2 t 2 +Γ(z) t + ω 0 2 ]M= χ 0 (z) ω 0 2 B μ 0 + c n t J M NL (z,t).
tan( 2 n THz ω 0 L c )= ( 1 n THz 2 )+( 1+ n THz 2 )cos( 2 ω 0 d c ) 2 n THz sin( 2 ω 0 d c ) .

Metrics