Abstract

High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara, M. Fujimura, and M. Uemukai, “Waveguide nonlinear-optic wavelength conversion devices and their applications,” in Photonics Based on Wavelength Integration and Manipulation, Vol. 2 of IPAP Books (Institute of Pure and Applied Physics, 2005), pp. 137–150.
  2. K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10282 .
    [CrossRef] [PubMed]
  3. Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
    [CrossRef]
  4. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
    [CrossRef]
  5. Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13(8), 2988–2993 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-8-2988 .
    [CrossRef] [PubMed]
  6. S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
    [CrossRef]
  7. J. Wang, J. Q. Sun, C. Lou, and Q. Z. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13(19), 7405–7414 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7405 .
    [CrossRef] [PubMed]
  8. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
    [CrossRef]
  9. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
    [CrossRef]
  10. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
    [CrossRef]
  11. A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett. 34(12), 1825–1827 (2009).
    [CrossRef] [PubMed]
  12. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
    [CrossRef]
  13. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
    [CrossRef] [PubMed]
  14. A. Tehranchi and R. Kashyap, “Improved cascaded sum and difference frequency generation-based wavelength converters in low-loss quasi-phase-matched lithium niobate waveguides,” Appl. Opt. 48(31), G143–G147 (2009).
    [CrossRef] [PubMed]
  15. M. Ahlawat, A. Tehranchi, C.-Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt. 50(25), E108–E111 (2011).
    [CrossRef]
  16. A. Tehranchi and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express 16(23), 18970–18975 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-23-18970 .
    [CrossRef] [PubMed]
  17. A. Tehranchi and R. Kashyap, “Wideband wavelength conversion using double-pass cascaded χ(2): χ(2) interaction in lossy waveguides,” Opt. Commun. 283(7), 1485–1488 (2010).
    [CrossRef]

2011

2010

2009

2008

2007

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

2005

2004

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

1997

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Ahlawat, M.

Assanto, G.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Bogoni, A.

Chen, B.

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

Fazal, I.

Fejer, M. M.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Furukawa, H.

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
[CrossRef] [PubMed]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Gallo, K.

Gao, S.

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Gu, W.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

Huang, D.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Ibsen, M.

Ito, H.

Jin, G.

Jung, C.

Kashyap, R.

Ko, D. K.

Lee, J.

Lee, K. J.

Lee, Y. L.

Liu, S.

Lou, C.

Lu, G.-W.

McGeehan, J. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Miyazaki, T.

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
[CrossRef] [PubMed]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Nirmalathas, A.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Noh, Y. C.

Parmigiani, F.

Petropoulos, P.

Richardson, D. J.

Shinada, S.

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
[CrossRef] [PubMed]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Sun, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Sun, J. Q.

Sun, Q. Z.

Tehranchi, A.

Tian, Y.

Tsuboya, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wada, N.

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
[CrossRef] [PubMed]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

Wang, J.

Wang, Y.

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

Willner, A. E.

A. Bogoni, X. Wu, I. Fazal, and A. E. Willner, “Photonic processing of 320 Gbits/s based on sum-/difference-frequency generation and pump depletion in a single PPLN waveguide,” Opt. Lett. 34(12), 1825–1827 (2009).
[CrossRef] [PubMed]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Wu, X.

Xiao, X.

Xu, C.-Q.

Yang, C.

You, Z.

Yu, B. A.

Yu, S.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second-order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Electron. Lett.

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

IEEE J. Quantum Electron.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photon. Technol. Lett. 19(6), 384–386 (2007).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

A. Tehranchi and R. Kashyap, “Wideband wavelength conversion using double-pass cascaded χ(2): χ(2) interaction in lossy waveguides,” Opt. Commun. 283(7), 1485–1488 (2010).
[CrossRef]

Opt. Express

Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13(8), 2988–2993 (2005), http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-8-2988 .
[CrossRef] [PubMed]

J. Wang, J. Q. Sun, C. Lou, and Q. Z. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13(19), 7405–7414 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7405 .
[CrossRef] [PubMed]

A. Tehranchi and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express 16(23), 18970–18975 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-23-18970 .
[CrossRef] [PubMed]

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18(6), 6064–6070 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-6-6064 .
[CrossRef] [PubMed]

K. J. Lee, S. Liu, F. Parmigiani, M. Ibsen, P. Petropoulos, K. Gallo, and D. J. Richardson, “OTDM to WDM format conversion based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 18(10), 10282–10288 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-10-10282 .
[CrossRef] [PubMed]

Opt. Lett.

Other

T. Suhara, M. Fujimura, and M. Uemukai, “Waveguide nonlinear-optic wavelength conversion devices and their applications,” in Photonics Based on Wavelength Integration and Manipulation, Vol. 2 of IPAP Books (Institute of Pure and Applied Physics, 2005), pp. 137–150.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schemes of (a) double-pass cascaded SFG + DFG and (b) few-section chirped gratings.

Fig. 2
Fig. 2

Efficiency of 3-cm-long (a) single-pass and (b) double-pass SFG + DFG devices versus signal wavelength for number of sections and critical period shifts.

Fig. 3
Fig. 3

Conversion efficiency of single-pass and double-pass cascaded SFG + DFG using 3-section chirped gratings versus signal wavelength for different loss when the length and total pump power are (a) 2.5 cm and 100 mW and (b) 1.25 cm and 400 mW. Double arrows show the efficiency enhancement for the double-pass scheme for lossless and low-loss cases.

Fig. 4
Fig. 4

Contour maps of efficiency, peak-to-peak ripple and bandwidth of the double-pass cascaded SFG + DFG versus length and power for the SF loss of 0.70 dB/cm for (a) uniform-gratings device, p = 1 and (b) ripple-free 3-section chirped gratings device, p = 3.

Tables (1)

Tables Icon

Table 1 Mean efficiency, Peak-to-Peak Ripple and Signal Bandwidth, for the 1-Section (Uniform) Gratings and 3-Section Chirped Gratings Using Single-Pass and Double-Pass Schemes

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d dx A p1 (x)=j ω p1 κ SFG A p2 (x) A SF (x)exp(jΔ k SFG x) 1 2 α p1 A p1 (x)
d dx A p2 (x)=j ω p2 κ SFG A p1 (x) A SF (x)exp(jΔ k SFG x) 1 2 α p2 A p2 (x)
d dx A SF (x)=j ω SF κ SFG A p1 (x) A p2 (x)exp(jΔ k SFG x) 1 2 α SF A SF (x)
d dx A SF ( x )=j ω SF κ DFG A s ( x ) A c ( x )exp(jΔ k DFG x ) 1 2 α SF A SF ( x )
d dx A s ( x )=j ω s κ DFG A SF ( x ) A c ( x )exp(jΔ k DFG x ) 1 2 α s A s ( x )
d dx A c ( x )=j ω c κ DFG A SF ( x ) A s ( x )exp(jΔ k DFG x ) 1 2 α c A c ( x )

Metrics