Abstract

Wavelength tuning and stability characteristics of a singly resonant continuous-wave optical parametric oscillator (cw OPO) in the proximity of signal-idler degeneracy have been studied. The OPO is made singly resonant by using a Bragg grating as a spectral filter in the OPO cavity. The signal-idler frequency difference can be tuned from 0.5 to 7 THz, which makes the OPO suitable for cw THz generation by optical heterodyning. The operation of the OPO within this singly-resonant regime is characterized by a strong self-stabilization effect. A gradual transition to an unstable, doubly-resonant regime is observed for a signal-idler detuning smaller than ~0.5 THz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
    [CrossRef] [PubMed]
  2. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
    [CrossRef] [PubMed]
  3. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
    [CrossRef] [PubMed]
  4. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Power and spectral characteristics of continuous-wave parametric oscillators: the doubly to singly resonant transition,” J. Opt. Soc. Am. B 10(9), 1684–1695 (1993).
    [CrossRef]
  5. A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
    [CrossRef]
  6. M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
    [CrossRef] [PubMed]
  7. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
    [CrossRef] [PubMed]
  8. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
    [CrossRef] [PubMed]
  9. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [CrossRef]
  10. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
    [CrossRef]
  11. S. T. Lin, Y. Y. Lin, T. D. Wang, and Y. C. Huang, “Thermal waveguide OPO,” Opt. Express 18(2), 1323–1329 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-2-1323 .
    [CrossRef] [PubMed]
  12. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
    [CrossRef]
  13. A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35(21), 3667–3669 (2010).
    [CrossRef] [PubMed]
  14. A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85(2-3), 181–184 (2006).
    [CrossRef]
  15. P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22(14), 1074–1076 (1997).
    [CrossRef] [PubMed]
  16. T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
    [CrossRef]
  17. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
    [CrossRef]
  18. J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
    [CrossRef]
  19. N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12(1), 124–131 (1995).
    [CrossRef]
  20. T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
    [CrossRef]
  21. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [CrossRef]
  22. S. Schiller, J. Schoser, C. Braxmaier, K. Bencheikh, U. Strössner, A. Peters, J. Mlynek, and P. De Natale, “Single-frequency CW optical parametric oscillators: devices and applications,” in Proc. Int. Conf. Laser Spectroscopy XIV, R. Blatt, ed. (World Scientific Publishing, Singapore, 1999), pp. 217–226.
  23. T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47(3), 390–397 (2011).
    [CrossRef]
  24. M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
    [CrossRef] [PubMed]
  25. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings when used in lasers for spectral control,” in Proceedings of 2nd EOS Topical Meeting on Lasers ETML'11 (European Optical Society, 2011), paper 4609.

2011 (4)

2010 (2)

2009 (2)

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
[CrossRef]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

2008 (2)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

2007 (2)

2006 (2)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85(2-3), 181–184 (2006).
[CrossRef]

2002 (1)

2001 (1)

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

2000 (1)

T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
[CrossRef]

1999 (1)

1998 (1)

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

1997 (1)

1995 (2)

N. P. Barnes and J. A. Williams-Byrd, “Average power effects in parametric oscillators and amplifiers,” J. Opt. Soc. Am. B 12(1), 124–131 (1995).
[CrossRef]

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

1993 (1)

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Barnes, N. P.

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Buchhave, P.

Byer, R. L.

Chung, T.-y.

T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47(3), 390–397 (2011).
[CrossRef]

Clairon, A.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

Colville, F. G.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Douillet, A.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
[CrossRef]

Dunn, M. H.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Eckardt, R. C.

Fejer, M. M.

Fujii, M.

Fukuyama, Y.

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Glebov, L.

Godard, A.

Halonen, L.

Hansen, P. L.

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
[CrossRef]

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Henderson, A. J.

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85(2-3), 181–184 (2006).
[CrossRef]

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Huang, Y. C.

Ikegami, T.

T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
[CrossRef]

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

Isaenko, L.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
[CrossRef]

Ishizuki, H.

Jacobsson, B.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Kazovsky, L. G.

Kurosu, T.

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

L’huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Laurell, F.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Lefebvre, M.

Lin, S. T.

Lin, Y. Y.

Lobanov, S.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
[CrossRef]

Marhic, M. E.

Michel, A.-M.

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Ohshima, S.

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

Ohshimal, S.-I.

T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
[CrossRef]

Padgett, M. J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Péalat, M.

Peltola, J.

M. Vainio, M. Siltanen, J. Peltola, and L. Halonen, “Grating-cavity continuous-wave optical parametric oscillators for high-resolution mid-infrared spectroscopy,” Appl. Opt. 50(4), A1–A10 (2011).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
[CrossRef]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
[CrossRef]

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

Raybaut, M.

Rotari, E.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Saikawa, J.

Schaar, J. E.

Schmid, T.

Schunemann, P. G.

Siltanen, M.

Slyusarev, S.

T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
[CrossRef]

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

Smirnov, V.

Sorokin, E.

Sorokina, I. T.

Stafford, R.

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85(2-3), 181–184 (2006).
[CrossRef]

Taira, T.

Tsai, T. E.

Vainio, M.

Vodopyanov, K. L.

Wang, T. D.

Waritanant, T.

T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47(3), 390–397 (2011).
[CrossRef]

Williams-Byrd, J. A.

Wong, K. K. Y.

Yang, S. T.

Yelisseyev, A.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
[CrossRef]

Zhang, J.

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Zondy, J.-J.

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16(9), 1481–1498 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (5)

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellemeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2006).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, “Thermal effects in singly resonant continuous-wave optical parametric oscillators,” Appl. Phys. B 94(3), 411–427 (2009).
[CrossRef]

A. J. Henderson and R. Stafford, “Intra-cavity power effects in singly resonant cw OPOs,” Appl. Phys. B 85(2-3), 181–184 (2006).
[CrossRef]

T. Ikegami, S. Slyusarev, T. Kurosu, Y. Fukuyama, and S. Ohshima, “Characteristics of a cw monolithic optical parametric oscillator,” Appl. Phys. B 66(6), 719–725 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[CrossRef]

T. Waritanant and T.-y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47(3), 390–397 (2011).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

J.-J. Zondy, A. Douillet, A. Clairon, A. Yelisseyev, L. Isaenko, and S. Lobanov, “Thermal effects limitations in mid-infrared continuous wave optical parametric oscillators,” J. Mater. Sci. Mater. Electron. 12(8), 451–460 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

T. Ikegami, S. Slyusarev, and S.-I. Ohshimal, “Long-term, mode-hop-free operation of a continuous-wave, doubly resonant, monolithic optical parametric oscillator,” Opt. Commun. 184(1-4), 13–17 (2000).
[CrossRef]

A. J. Henderson, M. J. Padgett, F. G. Colville, J. Zhang, and M. H. Dunn, “Doubly-resonant optical parametric oscillators: tuning behaviour and stability requirements,” Opt. Commun. 119(1-2), 256–264 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

A. Godard, M. Raybaut, T. Schmid, M. Lefebvre, A.-M. Michel, and M. Péalat, “Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators,” Opt. Lett. 35(21), 3667–3669 (2010).
[CrossRef] [PubMed]

M. Vainio and L. Halonen, “Stable operation of a cw optical parametric oscillator near the signal-idler degeneracy,” Opt. Lett. 36(4), 475–477 (2011).
[CrossRef] [PubMed]

K. L. Vodopyanov, E. Sorokin, I. T. Sorokina, and P. G. Schunemann, “Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator,” Opt. Lett. 36(12), 2275–2277 (2011).
[CrossRef] [PubMed]

P. L. Hansen and P. Buchhave, “Thermal self-frequency locking of a doubly resonant optical parametric oscillator,” Opt. Lett. 22(14), 1074–1076 (1997).
[CrossRef] [PubMed]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27(16), 1439–1441 (2002).
[CrossRef] [PubMed]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32(10), 1284–1286 (2007).
[CrossRef] [PubMed]

J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “High-energy, narrow-bandwidth periodically poled Mg-doped LiNbO3 optical parametric oscillator with a volume Bragg grating,” Opt. Lett. 32(20), 2996–2998 (2007).
[CrossRef] [PubMed]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett. 34(4), 449–451 (2009).
[CrossRef] [PubMed]

Other (2)

S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Thermal limitations of volume Bragg gratings when used in lasers for spectral control,” in Proceedings of 2nd EOS Topical Meeting on Lasers ETML'11 (European Optical Society, 2011), paper 4609.

S. Schiller, J. Schoser, C. Braxmaier, K. Bencheikh, U. Strössner, A. Peters, J. Mlynek, and P. De Natale, “Single-frequency CW optical parametric oscillators: devices and applications,” in Proc. Int. Conf. Laser Spectroscopy XIV, R. Blatt, ed. (World Scientific Publishing, Singapore, 1999), pp. 217–226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the OPO and the measurement setup. The folding angle of the OPO cavity is 7 degrees.

Fig. 2
Fig. 2

(a) Tuning of the signal-idler frequency difference as a function of crystal temperature for different poling periods Λ. Dots are measured points and solid lines are theoretical phase matching curves calculated using the Sellmeier data from [9] without taking into account thermal dephasing. Thermal expansion of the crystal was accounted for after [10]. The gray area indicates transition from SRO to DRO, and the dashed area shows the DRO regime. (b) Phase-matched pump wavelength as a function crystal temperature, when the resonant signal wavelength of the OPO is fixed to ~1584.5 nm. The dashed lines are guides to the eye.

Fig. 3
Fig. 3

Total output power (signal + idler) of the SRO at νs–νi ~2.6 THz. Empty dots denote the points measured with increasing pump power. The solid red dots denote the points that were measured when the pump power was decreased from the maximum back to the OPO threshold. Depleted pump beam profiles are presented in Fig. 4 for points (b), (c), and (d).

Fig. 4
Fig. 4

Pump beam profile measured after the OPO. Panel (a) shows the undepleted pump beam (OPO blocked) at the maximum pump power. Panels (b) to (d) show the depleted pump beam at respective points of Fig. 3. The 1/e2-diameter of the beam in x (horizontal) and y (vertical) directions are given as normalized to the respective diameters of the undepleted pump beam shown in panel (a). Horizontal (x) direction is the direction of narrow dimension of the MgO:PPLN crystal.

Fig. 5
Fig. 5

SRO output power during MgO:PPLN temperature scanning. The scan speeds are (a) 0.14 K/s, (b) 0.28 K/s, and (c) 0.42 K/s. Note the different time scales of the horizontal axes. The blue wide curves indicate temperature scans for decreasing temperature, and the red curves for increasing temperature. The power is normalized to the steady state output power, which is 1.4 W (at Λ = 20.5 µm, T = 61.7°C, and νs–νi ~2.6 THz). (d) Short and weak peaks are observed at scan speed ~0.35 K/s with increasing temperature. One of the peaks is shown in detail in the inset.

Fig. 6
Fig. 6

Transition between the SRO and DRO. Left column shows the normalized signal output powers and the right column shows the corresponding FPI spectra. The red dashed curves indicate the scan signals applied to the FPI. (a) Stable SRO with νs–νi ~1 THz. (b) Weakly DRO with νs–νi ~0.15 THz. (c) DRO with νs–νi < 0.1 THz. The pump power in the MgO:PPLN crystal was >1.7 W in all measurements. The idler peak in (a) is much weaker than the signal peak owing to the poor finesse of the FPI at the idler wavelength 1594 nm.

Fig. 7
Fig. 7

The OPO threshold power in the MgO:PPLN crystal as a function of signal-idler frequency detuning, measured with Λ = 20.3 µm.

Fig. 8
Fig. 8

Stability of the SRO at νs–νi = 2.6 THz. The upper panel shows the total output power (signal + idler) measured with a power meter that has ~1 s response time. The middle panel shows the drifts of νs and νi, and the lower panel shows νs–νi as a function of time. The frequency measurements are limited in short term by the 40 MHz resolution of the wavelength meter.

Fig. 9
Fig. 9

Stability of the SRO frequencies at νs–νi = 2.6 THz when the pump laser power is varied. The pump power in the MgO:PPLN crystal is increased stepwise from 2.35 to 2.60 W starting at 2 min., and back to 2.35 W starting at 5 min. A spontaneous mode hop of the pump laser is seen at 9 min.

Metrics