C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[Crossref]
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[Crossref]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[Crossref]
[PubMed]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
[Crossref]
[PubMed]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[Crossref]
[PubMed]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]
J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
[Crossref]
M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[Crossref]
H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[Crossref]
G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[Crossref]
T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[Crossref]
C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[Crossref]
C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]
S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[Crossref]
H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]
J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[Crossref]
J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[Crossref]
J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]
J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[Crossref]
[PubMed]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
[Crossref]
[PubMed]
A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[Crossref]
[PubMed]
I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]
G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[Crossref]
H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[Crossref]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[Crossref]
C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[Crossref]
J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]
J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[Crossref]
[PubMed]
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[Crossref]
[PubMed]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[Crossref]
[PubMed]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[Crossref]
M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[Crossref]
[PubMed]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[Crossref]
[PubMed]
A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[Crossref]
[PubMed]
S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[Crossref]
T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[Crossref]
M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[Crossref]
S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[Crossref]
A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[Crossref]
G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]
I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]
J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]
M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[Crossref]
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[Crossref]
J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
[Crossref]
M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[Crossref]
M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[Crossref]
J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[Crossref]
M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[Crossref]
M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[Crossref]
M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[Crossref]
C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[Crossref]
C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[Crossref]
M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[Crossref]
M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[Crossref]
S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[Crossref]
S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[Crossref]
[PubMed]
J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[Crossref]
[PubMed]
M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[Crossref]
[PubMed]
J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[Crossref]
J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[Crossref]
H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems, (Wiley 2010).
G. Odian, Principles of Polymerization 4th Edition (Wiley, New York, 1991).
T. Fäcke, F. Bruder, M. Weiser, T. Rölle, and D. Hönel, U.S. Patent No, US 2011/0065827 A1, (2011).
M. R. Gleeson, J. T. Sheridan, F. Bruder, T. Rölle, H. Berneth, M-S. Weiser and T. Fäcke, are preparing a manuscript to be called “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model.”
R. R. A. Syms, Practical Volume Holography (Clarendon Press, Oxford, 1990).