Abstract

An understanding of the photochemical and photo-physical processes, which occur during photopolymerization is of extreme importance when attempting to improve a photopolymer material’s performance for a given application. Recent work carried out on the modelling of the mechanisms which occur in photopolymers during- and post-exposure, has led to the development of a tool, which can be used to predict the behaviour of these materials under a wide range of conditions. In this paper, we explore this Non-local Photo-polymerisation Driven Diffusion model, illustrating some of the useful trends, which the model predicts and we analyse their implications on the improvement of photopolymer material performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  2. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
    [CrossRef]
  3. M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
    [CrossRef]
  4. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
    [CrossRef]
  5. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
    [CrossRef]
  6. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef] [PubMed]
  7. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
    [CrossRef]
  8. T. Fäcke, F. Bruder, M. Weiser, T. Rölle, and D. Hönel, U.S. Patent No, US 2011/0065827 A1, (2011).
  9. C. Ye and R. R. McLeod, “GRIN lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33(22), 2575–2577 (2008).
    [CrossRef] [PubMed]
  10. A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
    [CrossRef]
  11. K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems, (Wiley 2010).
  12. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
    [CrossRef] [PubMed]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
    [CrossRef] [PubMed]
  14. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
    [CrossRef]
  15. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
    [CrossRef]
  16. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [CrossRef]
  17. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
    [PubMed]
  18. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
    [CrossRef]
  19. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).
  20. M. R. Gleeson, J. T. Sheridan, F. Bruder, T. Rölle, H. Berneth, M-S. Weiser and T. Fäcke, are preparing a manuscript to be called “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model.”
  21. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
    [CrossRef]
  22. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
    [CrossRef]
  23. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
    [CrossRef]
  24. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
    [CrossRef] [PubMed]
  25. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
    [CrossRef] [PubMed]
  26. G. Odian, Principles of Polymerization 4th Edition (Wiley, New York, 1991).
  27. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
    [CrossRef]
  28. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
    [CrossRef]
  29. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
    [CrossRef]
  30. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
    [CrossRef]
  31. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
    [CrossRef]
  32. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).
  33. J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).
  34. H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).
  35. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
    [CrossRef]
  36. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
    [CrossRef] [PubMed]
  37. R. R. A. Syms, Practical Volume Holography (Clarendon Press, Oxford, 1990).
  38. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
    [CrossRef]
  39. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
    [CrossRef]
  40. C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
    [CrossRef]
  41. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
    [CrossRef]

2011 (2)

2010 (2)

2009 (6)

A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

2008 (4)

2007 (3)

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46(3), 295–301 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

2003 (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

2002 (1)

2001 (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[CrossRef]

2000 (2)

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[CrossRef] [PubMed]

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[CrossRef]

1999 (3)

J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[CrossRef]

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).

1998 (2)

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[CrossRef] [PubMed]

1997 (1)

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[CrossRef]

1994 (1)

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

1993 (1)

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

Amatguerri, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Beléndez, A.

Betsuyaku, K.

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[CrossRef] [PubMed]

Bowman, C. N.

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[CrossRef]

Boyd, J.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[CrossRef] [PubMed]

Close, C. E.

Colvin, V.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[CrossRef]

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[CrossRef] [PubMed]

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Fukumoto, A.

Gallego, S.

Gleeson, M. R.

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[CrossRef]

Grabowski, M. W.

Guo, J.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).

Hwang, H. C.

Jost, P.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[CrossRef]

Karpov, H. M.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).

Kelly, J. V.

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Kwon, J. H.

Lavielle, L.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[CrossRef]

Lawrence, J. R.

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).

Lopez, N.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Lougnot, J.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Beléndez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37(20), 4496–4499 (1998).
[CrossRef] [PubMed]

Mallavia, R.

Márquez, A.

Mateos, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

McLeod, R. R.

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

Mooney, D. A.

Mouroulis, P.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Neipp, C.

O’Duill, S.

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

O’Neill, F. T.

Obukhovsky, V. V.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).

O'Neill, F. T.

Ortuño, M.

Pascual, I.

Pineda, J.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Sabol, D.

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

Saravanamuttu, K.

A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[CrossRef]

Sastre, R.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

Sheridan, J. T.

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13(18), 6990–7004 (2005).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
[CrossRef] [PubMed]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).

Smirnova, T. N.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).

Sullivan, A. C.

Takeda, T.

Tanaka, K.

Tanaka, T.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

Toishi, M.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

Trentler, T.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

Villafranca, A. B.

A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[CrossRef]

Watanabe, K.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16(4), 2829–2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

Woo, K. C.

Ye, C.

Zhao, G. H.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B: Lasers Opt. 77(6–7), 639–662 (2003).
[CrossRef]

Chem. Mater. (1)

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12(5), 1431–1438 (2000).
[CrossRef]

J. Appl. Phys. (2)

M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104(6), 064917 (2008).
[CrossRef]

S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106(10), 104911 (2009).
[CrossRef]

J. Mod. Opt. (3)

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40(4), 699–706 (1993).
[CrossRef]

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45(7), 1465–1477 (1998).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7(1), 232–242 (2007).
[PubMed]

J. Opt. A, Pure Appl. Opt. (4)

M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerization in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11(2), 024008 (2009).
[CrossRef]

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part I. Theoretical modelling,” J. Opt. A, Pure Appl. Opt. (to be published).

J. Guo, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: Part II. Experimental results,” J. Opt. A, Pure Appl. Opt. (to be published).

A. B. Villafranca and K. Saravanamuttu, “Diffraction rings due to spatial self-phase modulation in a photopolymerizable medium,” J. Opt. A, Pure Appl. Opt. 11(12), 125202 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (11)

J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behaviour of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16(10), 1651–1657 (1999).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23(10), 2079–2088 (2006).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25(3), 396–406 (2008).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19(4), 621–629 (2002).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Modeling the Photochemical Kinetics Induced by Holographic Exposures in PQ/PMMA Photopolymer Material,” J. Opt. Soc. Am. B (to be published).

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behaviour of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26(3), 528–536 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental Validation,” J. Opt. Soc. Am. B 26(9), 1746–1754 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, J. Guo, and J. T. Sheridan, “Non-Local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary Radical Generation and Inhibition,” J. Opt. Soc. Am. B 27(9), 1804–1812 (2010).
[CrossRef]

C. E. Close, M. R. Gleeson, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings,” J. Opt. Soc. Am. B 28(4), 658–666 (2011).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material. Part II. High-frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B 28(4), 842–850 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Jpn. J. Appl. Phys. 46(6A), 3438–3447 (2007).
[CrossRef]

Macromol. (2)

M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromol. 32(20), 6552–6559 (1999).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromol. 43(22), 9462–9472 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Optik (Stuttg.) (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttg.) 112(10), 449–463 (2001).
[CrossRef]

Pure Appl. Opt. (1)

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6(2), 225–245 (1997).
[CrossRef]

Semi Conduct. Phys. Quantum Electron. Optoelectron. (1)

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semi Conduct. Phys. Quantum Electron. Optoelectron. 2(3), 66–70 (1999).

Other (5)

K. Curtis, L. Dhar, L. Murphy, and A. Hill, Future Developments, in Holographic Data Storage: From Theory to Practical Systems, (Wiley 2010).

G. Odian, Principles of Polymerization 4th Edition (Wiley, New York, 1991).

T. Fäcke, F. Bruder, M. Weiser, T. Rölle, and D. Hönel, U.S. Patent No, US 2011/0065827 A1, (2011).

M. R. Gleeson, J. T. Sheridan, F. Bruder, T. Rölle, H. Berneth, M-S. Weiser and T. Fäcke, are preparing a manuscript to be called “Analysis of the holographic performance of a commercially available photopolymer using the NPDD model.”

R. R. A. Syms, Practical Volume Holography (Clarendon Press, Oxford, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Flowchart of the photochemical mechanisms, which take place during photopolymerisation.

Fig. 3
Fig. 3

(a) Spatial frequency response for varying exposure intensities, I0 = 0.5 mW/cm2 (long dashed line), I0 = 1.0 mW/cm2 (dashed line), I0 = 2.0 mW/cm2 (short dashed line), and I0 = 3.0 mW/cm2 (shortest dashed line); (b) Spatial frequency response for varying monomer diffusion coefficients, Dm0 = 1×10−10 cm2/s (small dashed line), Dm0 = 1×10−11 cm2/s (dashed line), Dm0 = 5×10−12 cm2/s (long dashed line), Dm0 = 1×10−12 cm2/s (longest dashed line).

Fig. 2
Fig. 2

Simulation of the saturated refractive index modulation, n1sat, for varying values of the propagation rate constant, kp for a range of monomer diffusion coefficients, Dm0 = 1 × 10−10 cm2/s (small dashed line), Dm0 = 1 × 10−11 cm2/s (dashed line), Dm0 = 5 × 10−12 cm2/s (long dashed line), and Dm0 = 1 × 10−12 cm2/s (longest dashed line).

Fig. 4
Fig. 4

Simulation of the saturated refractive index modulation for varying values of the bimolecular termination rate constant, kt, for various values of the monomer diffusion coefficient, Dm0 = 1 × 10−10 cm2/s (small dashed line), Dm0 = 1 × 10−11 cm2/s (dashed line), Dm0 = 5 × 10−12 cm2/s (long dashed line), and Dm0 = 1 × 10−12 cm2/s (longest dashed line).

Fig. 5
Fig. 5

(a) Simulation of the polymerisation rate, Rp, against monomer conversion and (b) simulation of growth curves of refractive index modulation, for varying propagation rates, kp = 1.5×107 cm3/mols (purple triangle), kp = 2.6×107 cm3/mols (red asterisk), kp = 1.0×108 cm3/mols (green filled circle), kp = 2.6×108 cm3/mols (blue empty circle).

Fig. 6
Fig. 6

(a) Simulation of polymerisation rate, Rp, against monomer conversion and (b) simulation of growth curves of refractive index modulation, for varying termination rates, kt = 1.8×1010 cm3/mols (purple triangle), kt = 6.0×109 cm3/mols (red asterisk), kt = 1.5×108 cm3/mols (green filled circle), kt = 1.5×107 cm3/mols (blue empty circle).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

dDye( x,t ) dt = k a Dye( x,t )+ k r D 3 y e * ( x,t ),
d 3 Dy e * ( x,t ) dt = k a Dye( x,t ) k r 3 Dy e * ( x,t ) k d 3 Dy e * ( x,t )CI( x,t ) k z1 3 Dy e * ( x,t )Z( x,t ),
dCI( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k b HDy e ( x,t )CI( x,t ),
dHDy e ( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k b HDy e ( x,t )CI( x,t ),
d R ( x,t ) dt = k d 3 Dy e * ( x,t )CI( x,t ) k i R ( x,t )u( x,t ) k tp R ( x,t ) M ( x,t ) k z2 R ( x,t )Z( x,t ),
d M ( x,t ) dt = k i R ( x,t )u( x,t ) k t [ M ( x,t ) ] 2 k tp R ( x,t ) M ( x,t ) k z3 Z( x,t ) M ( x,t ),
du( x,t ) dt = d dx [ D m ( x,t ) du( x,t ) dx ] k i R ( x,t )u( x,t ) k p M ( x',t )u( x',t )G( x,x' )dx' ,
dN( x,t ) dt = k p M ( x',t )u( x',t )G( x,x' )dx' d dx [ D N ( x,t ) dN( x,t ) dx ],
dZ( x,t ) dt = d dx [ D z ( x,t ) dZ( x,t ) dx ] k z1 3 Dy e * ( x,t )Z( x,t ) k z2 Z( x,t ) R ( x,t ) k z3 Z( x,t ) M ( x,t )+ τ z [ Z 0 Z( x,t ) ] .
G( x,x' )= 1 2πσ exp[ ( xx' ) 2 2σ ],
Z 0 ( t=0 )= Z 0 , Dy e 0 ( t=0 )=Dy e 0 , C I 0 ( t=0 )=C I 0 , u 0 ( t=0 )= U 0 , Dy e n>0 ( t=0 )= D 3 y e n0 * ( t=0 )=HDy e n0 ( t=0 )=C I n>0 ( t=0 )=0, and Z n>0 ( t=0 )= R n0 ( t=0 )= M n0 ( t=0 )= N n0 ( t=0 )=0.
n 1 ( t )= ( n dark 2 +2 ) 2 6 n dark [ φ 1 ( m ) ( t )( n m 2 1 n m 2 +2 n b 2 1 n b 2 +2 )+ φ 1 ( p ) ( t )( n p 2 1 n p 2 +2 n b 2 1 n b 2 +2 ) ].

Metrics