Abstract

Optical tweezers are recognized single-molecule technique to resolve forces and motion on the molecular scale. Complex biological phenomena, such as cell differentiation and locomotion, require long range tracking capabilities with nanometer resolution over an extended period, to resolve molecular processes on the cellular scale. Here we introduce a real-time control of the microscope stage position to perform long-term tracking, with sub-millisecond resolution, of a bead attached to a neuron, preserving sub-nanometer sensitivity on a spatial range of centimeters, seven orders of magnitude larger. Moreover, the suitability of the system is tested by time- modulating the force-clamp condition to study the role of statically and dynamically applied forces in neuronal differentiation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken) 68(5), 259–265 (2011).
    [CrossRef] [PubMed]
  2. S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
    [CrossRef] [PubMed]
  3. D. E. Ingber, “From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009,” Ann. Biomed. Eng. 38(3), 1148–1161 (2010).
    [CrossRef] [PubMed]
  4. T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development 137(9), 1407–1420 (2010).
    [CrossRef] [PubMed]
  5. P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
    [CrossRef] [PubMed]
  6. S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
    [CrossRef] [PubMed]
  7. C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
    [CrossRef] [PubMed]
  8. D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
    [CrossRef] [PubMed]
  9. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
    [CrossRef] [PubMed]
  10. A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
    [CrossRef] [PubMed]
  11. A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
    [CrossRef]
  12. H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
    [CrossRef] [PubMed]
  13. E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
    [CrossRef] [PubMed]
  14. F. Difato, E. Ferrari, R. Shahapure, V. Torre, and D. Cojoc, “Optical tweezers microscopy: piconewton forces in cell and molecular biology,” in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, A. Diaspro, ed. (Taylor & Francis, 2010).
  15. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  16. M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett. 92(24), 248101 (2004).
    [CrossRef] [PubMed]
  17. D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Express 16(14), 10507–10517 (2008).
    [CrossRef] [PubMed]
  18. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
    [CrossRef] [PubMed]
  19. P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
    [CrossRef]
  20. T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
    [CrossRef] [PubMed]
  21. R. Dasgupta, R. S. Verma, S. Ahlawat, D. Chaturvedi, and P. K. Gupta, “Long-distance axial trapping with Laguerre-Gaussian beams,” Appl. Opt. 50(10), 1469–1476 (2011).
    [CrossRef] [PubMed]
  22. R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
    [CrossRef] [PubMed]
  23. R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18(11), 11785–11790 (2010).
    [CrossRef] [PubMed]
  24. T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum. 81(12), 123105 (2010).
    [CrossRef] [PubMed]
  25. S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
    [CrossRef] [PubMed]
  26. M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
    [CrossRef]
  27. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17(25), 22718–22725 (2009).
    [CrossRef] [PubMed]
  28. A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
    [CrossRef]
  29. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
    [CrossRef] [PubMed]
  30. V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).
  31. H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
    [CrossRef] [PubMed]
  32. S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
    [CrossRef] [PubMed]
  33. A. Mogilner, “On the edge: modeling protrusion,” Curr. Opin. Cell Biol. 18(1), 32–39 (2006).
    [CrossRef] [PubMed]
  34. R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
    [CrossRef] [PubMed]
  35. F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
    [CrossRef] [PubMed]
  36. F. Difato, Schibalsky L., F. Benfenati, and A. Blau, “Integration of optical manipulation and electrophysiological tools to modulate and record activity in neural networks,” Int. J. Optomechatronics (to be pubblished).
  37. L. Dozio and P. Mantegazza, “Real time distributed control systems using RTAI,” in Proceedings of IEEE Conference on Object-Oriented Real-Time Distributed Computing Symp. (IEEE, 2003), pp. 11–18.
  38. D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
    [CrossRef] [PubMed]
  39. Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum. 79(5), 053101 (2008).
    [CrossRef] [PubMed]
  40. M. Basso, R. Bucher, M. Romagnoli, and M. Vassalli, “Real-Time Control with Linux: A Web Services Approach,” in Proceedings of IEEE Conference on Decision and Control, and the European Control Conference (IEEE, 2005), pp. 2733–2738.
  41. H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
    [CrossRef] [PubMed]
  42. P. C. Seitz, E. H. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method,” Appl. Opt. 45(28), 7309–7315 (2006).
    [CrossRef] [PubMed]
  43. M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J. 100(2), 351–360 (2011).
    [CrossRef] [PubMed]
  44. V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol. 21(1), 38–46 (2009).
    [CrossRef] [PubMed]
  45. G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
    [CrossRef] [PubMed]
  46. K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
    [CrossRef] [PubMed]
  47. O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
    [CrossRef] [PubMed]
  48. J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
    [CrossRef] [PubMed]
  49. J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
    [CrossRef] [PubMed]
  50. M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
    [CrossRef] [PubMed]
  51. D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
    [CrossRef] [PubMed]

2011 (8)

F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken) 68(5), 259–265 (2011).
[CrossRef] [PubMed]

S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
[CrossRef] [PubMed]

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[CrossRef] [PubMed]

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

R. Dasgupta, R. S. Verma, S. Ahlawat, D. Chaturvedi, and P. K. Gupta, “Long-distance axial trapping with Laguerre-Gaussian beams,” Appl. Opt. 50(10), 1469–1476 (2011).
[CrossRef] [PubMed]

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J. 100(2), 351–360 (2011).
[CrossRef] [PubMed]

J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
[CrossRef] [PubMed]

2010 (8)

J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
[CrossRef] [PubMed]

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

R. Bowman, G. Gibson, and M. Padgett, “Particle tracking stereomicroscopy in optical tweezers: control of trap shape,” Opt. Express 18(11), 11785–11790 (2010).
[CrossRef] [PubMed]

T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum. 81(12), 123105 (2010).
[CrossRef] [PubMed]

D. E. Ingber, “From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009,” Ann. Biomed. Eng. 38(3), 1148–1161 (2010).
[CrossRef] [PubMed]

T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development 137(9), 1407–1420 (2010).
[CrossRef] [PubMed]

2009 (7)

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express 17(25), 22718–22725 (2009).
[CrossRef] [PubMed]

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol. 21(1), 38–46 (2009).
[CrossRef] [PubMed]

2008 (7)

T. Cižmár, V. Kollárová, X. Tsampoula, F. Gunn-Moore, W. Sibbett, Z. Bouchal, and K. Dholakia, “Generation of multiple Bessel beams for a biophotonics workstation,” Opt. Express 16(18), 14024–14035 (2008).
[CrossRef] [PubMed]

Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum. 79(5), 053101 (2008).
[CrossRef] [PubMed]

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
[CrossRef] [PubMed]

S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
[CrossRef] [PubMed]

D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Express 16(14), 10507–10517 (2008).
[CrossRef] [PubMed]

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

2007 (6)

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
[CrossRef]

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
[CrossRef] [PubMed]

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Mogilner, “On the edge: modeling protrusion,” Curr. Opin. Cell Biol. 18(1), 32–39 (2006).
[CrossRef] [PubMed]

P. C. Seitz, E. H. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method,” Appl. Opt. 45(28), 7309–7315 (2006).
[CrossRef] [PubMed]

P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
[CrossRef]

2005 (1)

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

2004 (4)

R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
[CrossRef] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett. 92(24), 248101 (2004).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

2003 (2)

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28(8), 657–659 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

Aggarwal, T.

T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum. 81(12), 123105 (2010).
[CrossRef] [PubMed]

Ahlawat, S.

Allioux-Guérin, M.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Amin, L.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

Anton, E. S.

H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
[CrossRef] [PubMed]

Asnacios, A.

J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
[CrossRef] [PubMed]

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Avigan, P.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Babu, H.

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Banerjee, A. G.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Baschieri, P.

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Beaver, W.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Benfenati, F.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Berdondini, L.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Biais, N.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Bianco, P.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Bisson, G.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

Blau, A.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Borisy, G.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Bouchal, Z.

Bowman, R.

Cai, Y.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Capitanio, M.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
[CrossRef]

Carnegie, D. J.

Chaga, O.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Chaturvedi, D.

Chaudhuri, O.

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

Cheung, G.

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Chiba, A.

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

Chieregatti, E.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Chowdhury, S.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Cicchi, R.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
[CrossRef]

Cižmár, T.

Cojoc, D.

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Coppey-Moisan, M.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Dal Maschio, M.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Dasgupta, R.

Dholakia, K.

Di Fabrizio, E. M.

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Difato, F.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Dimova, R.

P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
[CrossRef]

Döbereiner, H. G.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Dogterom, M.

S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
[CrossRef] [PubMed]

M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett. 92(24), 248101 (2004).
[CrossRef] [PubMed]

Dubin-Thaler, B. J.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Dufresne, E. R.

Durieux, C.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Ercolini, E.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

Fardin, M. A.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Fellin, T.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Ferrari, E.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Fletcher, D. A.

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

Florin, E. L.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

Forde, N. R.

Forscher, P.

Fouchard, J.

J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
[CrossRef] [PubMed]

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Freund, Y.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Gajraj, A.

R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
[CrossRef] [PubMed]

Gallet, F.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Garcés-Chávez, V.

Gauthier, N.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Ghashghaei, H. T.

H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
[CrossRef] [PubMed]

Ghassemi, S.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Giannone, G.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Gibson, G.

Gittes, F.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Gourdon, D.

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Gunn-Moore, F.

Gupta, P. K.

Gupta, S. K.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Haeggstrom, E.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

Hameed, F. M.

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

Heller, E. R.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Hénon, S.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Hone, J. C.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Hoogerland, M. D.

Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum. 79(5), 053101 (2008).
[CrossRef] [PubMed]

Huber, F.

F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken) 68(5), 259–265 (2011).
[CrossRef] [PubMed]

Huber, T.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Icard-Arcizet, D.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Ingber, D. E.

T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development 137(9), 1407–1420 (2010).
[CrossRef] [PubMed]

D. E. Ingber, “From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009,” Ann. Biomed. Eng. 38(3), 1148–1161 (2010).
[CrossRef] [PubMed]

Janson, M. E.

M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett. 92(24), 248101 (2004).
[CrossRef] [PubMed]

Jiang, G.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Kalisch, S. M.

S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
[CrossRef] [PubMed]

Käs, J.

F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken) 68(5), 259–265 (2011).
[CrossRef] [PubMed]

Kellermayer, M. S.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Kempermann, G.

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Kengyel, A.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Kettenmann, H.

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Klotzsch, E.

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Koeckert, M. S.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Kollárová, V.

Kraikivski, P.

P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
[CrossRef]

Kubow, K. E.

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Laan, L.

S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
[CrossRef] [PubMed]

Lai, C.

H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
[CrossRef] [PubMed]

Laio, A.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

Laishram, J.

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Linnenberger, A.

Little, W. C.

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Liu, K. K.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Losert, W.

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

Maccione, A.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Mammoto, T.

T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development 137(9), 1407–1420 (2010).
[CrossRef] [PubMed]

Marconi, E.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Mártonfalvi, Z.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Masse, M. J.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Materassi, D.

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Mathur, A.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Mazilu, M.

McGloin, D.

Meiners, J. C.

R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
[CrossRef] [PubMed]

Mejean, C. O.

Mevel, J. C.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Miller, K. E.

M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J. 100(2), 351–360 (2011).
[CrossRef] [PubMed]

Millman, E. A.

Mitrossilis, D.

J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
[CrossRef] [PubMed]

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Mogilner, A.

A. Mogilner, “On the edge: modeling protrusion,” Curr. Opin. Cell Biol. 18(1), 32–39 (2006).
[CrossRef] [PubMed]

Nagy, A.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Nambiar, R.

R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Neumayer, D.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

O’Toole, M.

M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J. 100(2), 351–360 (2011).
[CrossRef] [PubMed]

Ojala, H.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

Padgett, M.

Palmer, T. D.

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Parekh, S. H.

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

Pavone, F. S.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
[CrossRef]

Pereira, D.

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Perrone, S.

S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
[CrossRef] [PubMed]

Peterman, E. J.

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Petrov, D.

S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
[CrossRef] [PubMed]

Postic, F.

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Pouligny, B.

P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
[CrossRef]

Preece, D.

Rajagopalan, J.

J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
[CrossRef] [PubMed]

Richert, A.

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Righi, M.

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Rohrbach, A.

P. C. Seitz, E. H. Stelzer, and A. Rohrbach, “Interferometric tracking of optically trapped probes behind structured surfaces: A phase correction method,” Appl. Opt. 45(28), 7309–7315 (2006).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

Ronzitti, G.

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

Roopa, T.

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

Rossier, O.

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Rossier, O. M.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Saif, M. T. A.

J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
[CrossRef] [PubMed]

Saif, T.

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

Saint-Jean, M.

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

Salapaka, M.

T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum. 81(12), 123105 (2010).
[CrossRef] [PubMed]

Samorì, B.

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Schaefer, A. W.

Schmidt, C. F.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[CrossRef] [PubMed]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

Seitz, P. C.

Serati, S.

Shahapure, R.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

Shahapure, R. B.

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Sheetz, M. P.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol. 21(1), 38–46 (2009).
[CrossRef] [PubMed]

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Shivashankar, G.V.

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

Sibbett, W.

Siechen, S.

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

Smith, M. L.

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Soni, V.

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

Stelzer, E.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

Stelzer, E. H.

Stevenson, D. J.

Szatmári, D.

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

Theriot, J. A.

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

Tiribilli, B.

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Tischer, C.

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

Tofangchi, A.

J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
[CrossRef] [PubMed]

Torre, V.

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

Tramier, M.

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Tsampoula, X.

Tuma, R.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

van der Horst, A.

Veigel, C.

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[CrossRef] [PubMed]

Verma, R. S.

Vogel, V.

V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol. 21(1), 38–46 (2009).
[CrossRef] [PubMed]

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

Volpe, G.

S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
[CrossRef] [PubMed]

Vonnegut, W.

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Wallin, A. E.

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

Wenas, Y. C.

Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum. 79(5), 053101 (2008).
[CrossRef] [PubMed]

Yang, S.

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Zuccheri, G.

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

D. E. Ingber, “From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009,” Ann. Biomed. Eng. 38(3), 1148–1161 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. E. Wallin, H. Ojala, E. Haeggstrom, and R. Tuma, “Stiffer optical tweezers through real-time feedback control,” Appl. Phys. Lett. 92(22), 224104 (2008).
[CrossRef]

Biophys. J. (7)

R. Shahapure, F. Difato, A. Laio, G. Bisson, E. Ercolini, L. Amin, E. Ferrari, and V. Torre, “Force generation in lamellipodia is a probabilistic process with fast growth and retraction events,” Biophys. J. 98(6), 979–988 (2010).
[CrossRef] [PubMed]

R. Nambiar, A. Gajraj, and J. C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J. 87(3), 1972–1980 (2004).
[CrossRef] [PubMed]

P. Bianco, A. Nagy, A. Kengyel, D. Szatmári, Z. Mártonfalvi, T. Huber, and M. S. Kellermayer, “Interaction forces between F-actin and titin PEVK domain measured with optical tweezers,” Biophys. J. 93(6), 2102–2109 (2007).
[CrossRef] [PubMed]

E. J. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84(2), 1308–1316 (2003).
[CrossRef] [PubMed]

M. O’Toole and K. E. Miller, “The role of stretching in slow axonal transport,” Biophys. J. 100(2), 351–360 (2011).
[CrossRef] [PubMed]

J. Rajagopalan, A. Tofangchi, and M. T. A. Saif, “Drosophila neurons actively regulate axonal tension in vivo,” Biophys. J. 99(10), 3208–3215 (2010).
[CrossRef] [PubMed]

M. Allioux-Guérin, D. Icard-Arcizet, C. Durieux, S. Hénon, F. Gallet, J. C. Mevel, M. J. Masse, M. Tramier, and M. Coppey-Moisan, “Spatiotemporal analysis of cell response to a rigidity gradient: a quantitative study using multiple optical tweezers,” Biophys. J. 96(1), 238–247 (2009).
[CrossRef] [PubMed]

Cell (1)

G. Giannone, B. J. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. G. Döbereiner, Y. Freund, G. Borisy, and M. P. Sheetz, “Lamellipodial actin mechanically links myosin activity with adhesion-site formation,” Cell 128(3), 561–575 (2007).
[CrossRef] [PubMed]

Cell Adhes. Migr. (1)

J. Fouchard, D. Mitrossilis, and A. Asnacios, “Acto-myosin based response to stiffness and rigidity sensing,” Cell Adhes. Migr. 5(1), 16–19 (2011).
[CrossRef] [PubMed]

Curr. Opin. Cell Biol. (2)

V. Vogel and M. P. Sheetz, “Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways,” Curr. Opin. Cell Biol. 21(1), 38–46 (2009).
[CrossRef] [PubMed]

A. Mogilner, “On the edge: modeling protrusion,” Curr. Opin. Cell Biol. 18(1), 32–39 (2006).
[CrossRef] [PubMed]

Cytoskeleton (Hoboken) (1)

F. Huber and J. Käs, “Self-regulative organization of the cytoskeleton,” Cytoskeleton (Hoboken) 68(5), 259–265 (2011).
[CrossRef] [PubMed]

Development (1)

T. Mammoto and D. E. Ingber, “Mechanical control of tissue and organ development,” Development 137(9), 1407–1420 (2010).
[CrossRef] [PubMed]

EMBO J. (1)

O. M. Rossier, N. Gauthier, N. Biais, W. Vonnegut, M. A. Fardin, P. Avigan, E. R. Heller, A. Mathur, S. Ghassemi, M. S. Koeckert, J. C. Hone, and M. P. Sheetz, “Force generated by actomyosin contraction builds bridges between adhesive contacts,” EMBO J. 29(6), 1055–1068 (2010).
[CrossRef] [PubMed]

Integr. Biol. (1)

K. E. Kubow, E. Klotzsch, M. L. Smith, D. Gourdon, W. C. Little, and V. Vogel, “Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells,” Integr. Biol. 1(11-12), 635–648 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

A. G. Banerjee, S. Chowdhury, W. Losert, and S. K. Gupta, “Survey on indirect optical manipulation of cells, nucleic acids, and motor proteins,” J. Biomed. Opt. 16(5), 051302 (2011).
[CrossRef] [PubMed]

F. Difato, M. Dal Maschio, E. Marconi, G. Ronzitti, A. Maccione, T. Fellin, L. Berdondini, E. Chieregatti, F. Benfenati, and A. Blau, “Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks,” J. Biomed. Opt. 16(5), 051306 (2011).
[CrossRef] [PubMed]

J. R. Soc. Interface (1)

H. Zhang and K. K. Liu, “Optical tweezers for single cells,” J. R. Soc. Interface 5(24), 671–690 (2008).
[CrossRef] [PubMed]

Methods Mol. Biol. (1)

S. M. Kalisch, L. Laan, and M. Dogterom, “Force generation by dynamic microtubules in vitro,” Methods Mol. Biol. 777, 147–165 (2011).
[CrossRef] [PubMed]

Nat. Cell Biol. (1)

S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines the velocity of actin-network growth,” Nat. Cell Biol. 7(12), 1219–1223 (2005).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

C. Veigel and C. F. Schmidt, “Moving into the cell: single-molecule studies of molecular motors in complex environments,” Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

H. T. Ghashghaei, C. Lai, and E. S. Anton, “Neuronal migration in the adult brain: are we there yet?” Nat. Rev. Neurosci. 8(2), 141–151 (2007).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lasers Eng. (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45(4), 450–457 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. E. Janson and M. Dogterom, “Scaling of microtubule force-velocity curves obtained at different tubulin concentrations,” Phys. Rev. Lett. 92(24), 248101 (2004).
[CrossRef] [PubMed]

PLoS ONE (2)

D. Cojoc, F. Difato, E. Ferrari, R. B. Shahapure, J. Laishram, M. Righi, E. M. Di Fabrizio, and V. Torre, “Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components,” PLoS ONE 2(10), e1072–e1078 (2007).
[CrossRef] [PubMed]

H. Babu, G. Cheung, H. Kettenmann, T. D. Palmer, and G. Kempermann, “Enriched monolayer precursor cell cultures from micro-dissected adult mouse dentate gyrus yield functional granule cell-like neurons,” PLoS ONE 2(4), e388 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios, “Real-time single-cell response to stiffness,” Proc. Natl. Acad. Sci. U.S.A. 107(38), 16518–16523 (2010).
[CrossRef] [PubMed]

S. Siechen, S. Yang, A. Chiba, and T. Saif, “Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12611–12616 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (8)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

A. Rohrbach, C. Tischer, D. Neumayer, E. L. Florin, and E. Stelzer, “Trapping and tracking a local probe with a photonic force microscope,” Rev. Sci. Instrum. 75(6), 2197–2210 (2004).
[CrossRef]

P. Kraikivski, B. Pouligny, and R. Dimova, “Implementing both short- and long-working-distance optical trappings into a commercial microscope,” Rev. Sci. Instrum. 77(11), 113703 (2006).
[CrossRef]

T. Aggarwal and M. Salapaka, “Real-time nonlinear correction of back-focal-plane detection in optical tweezers,” Rev. Sci. Instrum. 81(12), 123105 (2010).
[CrossRef] [PubMed]

S. Perrone, G. Volpe, and D. Petrov, “10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope,” Rev. Sci. Instrum. 79(10), 106101 (2008).
[CrossRef] [PubMed]

V. Soni, F. M. Hameed, T. Roopa, and G.V. Shivashankar, “Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience,” Rev. Sci. Instrum. 83, 1464–1470 (2002).

D. Materassi, P. Baschieri, B. Tiribilli, G. Zuccheri, and B. Samorì, “An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments,” Rev. Sci. Instrum. 80(8), 084301 (2009).
[CrossRef] [PubMed]

Y. C. Wenas and M. D. Hoogerland, “A versatile all-optical Bose-Einstein condensates apparatus,” Rev. Sci. Instrum. 79(5), 053101 (2008).
[CrossRef] [PubMed]

Other (4)

M. Basso, R. Bucher, M. Romagnoli, and M. Vassalli, “Real-Time Control with Linux: A Web Services Approach,” in Proceedings of IEEE Conference on Decision and Control, and the European Control Conference (IEEE, 2005), pp. 2733–2738.

F. Difato, Schibalsky L., F. Benfenati, and A. Blau, “Integration of optical manipulation and electrophysiological tools to modulate and record activity in neural networks,” Int. J. Optomechatronics (to be pubblished).

L. Dozio and P. Mantegazza, “Real time distributed control systems using RTAI,” in Proceedings of IEEE Conference on Object-Oriented Real-Time Distributed Computing Symp. (IEEE, 2003), pp. 11–18.

F. Difato, E. Ferrari, R. Shahapure, V. Torre, and D. Cojoc, “Optical tweezers microscopy: piconewton forces in cell and molecular biology,” in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, A. Diaspro, ed. (Taylor & Francis, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System architecture and calibration. (a) Overview of the control architecture, with real-time feedback PI control of the Pstage, and automatic recoveries of the Mstage. Numbers in the black circles indicate the essential components fo the systems: (1) Optical trapping laser, (2) QPD based detection system, (3) Mstage, (4) Pstage. (b) Evaluation of feedback control behavior in response to step motion of 400 nm, actuated with a velocity of 10 μm/sec, for increasing proportional gains P. (c) Evaluation of feedback control behavior in response to step motion of 400 nm, actuated with a velocity of 10 μm/sec, for increasing integral gains I. (d) Constant tracking errors while following bead movements at various recovery velocities of the Mstage.

Fig. 2
Fig. 2

A bead manipulated by a micropipette to test the tracking system performance. (a) Traces of the positions on three axes of Mstage and Pstage, and corresponding photodiodes traces. Traces of the x, y, z coordinates of the tracked bead (in blue, red and green respectively). Colored boxes show recovery phases. (b) Total movement of the bead obtained by subtracting Mstage positions to the sum of Pstage positions and QPD traces. In the upper panel, a snapshot of the bead attached to the micropipette. (c) Inset of the bead displacement from the centre of the trap, on the left (QPD trace only). On the right, bead absolute displacement with micropipette step movements and thermal noise clearly noticeable (on the right).

Fig. 3
Fig. 3

A growth cone connecting to a neurite. (a) Growth cone of differentiating rat hippocampal neuron (6 DIV) with an attached poly-D-lysine coated bead. The red line indicates the trace followed by the growth cone tracked by the attached bead. (b) Tiles of the growth cone motion during the interferometric tracking, acquired by bright-field imaging at 0.3 Hz. Numbers indicate minutes. (c) Traces of the x, y, z coordinates of the tracked bead (in blue, red and green, respectively). Axes origin is at the left upper corner of the field of view in a. Traces are sampled at 2 KHz (kx,y = 6.5 fN/nm, kz = 2.3 fN/nm). Power at the sample, 5.5 mW. Bars, 8 μm.

Fig. 4
Fig. 4

A growth cone under constant tension. (a) Growth cone of differentiating rat hippocampal neuron (6 DIV) with an attached poly-D-lysine coated bead. The red line indicates the trace followed by the growth cone tracked by the attached bead. The white arrow indicates the constant force applied to the trapped bead. (b) Tiles of the growth cone motion during the interferometric tracking, acquired by bright-field imaging at 0.3 Hz. Numbers indicate minutes. (c) Traces of the x, y, z coordinates of the tracked bead (respectively in blue, red and green). Axes origin is at the left upper corner of the field of view in a. Traces are sampled at 2 KHz (kx,y = 4.7 fN/nm, kz = 2.1 fN/nm). Power at the sample, 4.5 mW. Bars, 8 μm.

Fig. 5
Fig. 5

Growth cones motility under time modulated tension. (a) Two contacting growth cones of a differentiating rat hippocampal neuron (7 DIV) with an attached poly-D-lysine coated bead. The white arrow indicates the constant force applied on the trapped bead. (b) Traces of the x, y, z coordinates of the tracked bead (in blue, red and green, respectively). Axes origin is at the left upper corner of the field of view in a. Traces are sampled at 2 KHz (kx,y = 4 fN/nm, kz = 2 fN/nm). The blue shadow indicates when the applied force in the x direction is time modulated. Power at the sample, 3.8 mW. Bars, 8 μm. (c) Inset of the traces showed in b. The black line represent the tracked reference point in the x direction indicated in pN on the left side of the plot (oscillating frequency 0.3 Hz).

Fig. 6
Fig. 6

Tracking a migrating adult dentate neural precursor cell. (a) An adult dentate neural precursor cell with a poly-D-lysine coated bead attached. The red line indicates the trace followed by the cell tracked by the attached bead. (b) Tiles of the cell motion during the interferometric tracking, acquired by bright-field imaging at 0.3 Hz. Numbers indicate minutes. (c) Traces of the x, y, z coordinates of the tracked bead (in blue, red and green, respectively). Axes origin is at the left upper corner of the field of view in a. Traces are sampled at 2 KHz (kx,y = 4 fN/nm, kz = 2 fN/nm). Power at the sample, 3.8 mW. Bars, 8 μm.

Metrics