Abstract

We show that efficient coupling of lightwave is possible to an individual plasmonic nanoresonator in a hybrid plasmonic-photonic resonator structure. The proposed hybrid structure consists of a photonic microresonator strongly coupled to a plasmonic nanoresonator. The theory and simulation results show that more than 73% of the input power in the waveguide can be coupled to the localized resonance mode of the plasmonic nanoresonator.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Rosi and C. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
    [CrossRef] [PubMed]
  2. M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
    [CrossRef]
  3. N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
    [CrossRef] [PubMed]
  4. R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
    [CrossRef]
  5. H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  6. W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
    [CrossRef]
  7. S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  8. X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
    [CrossRef] [PubMed]
  9. K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  10. P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
    [CrossRef]
  11. A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
    [CrossRef]
  12. G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
    [CrossRef]
  13. L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
    [CrossRef] [PubMed]
  14. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
    [CrossRef]
  15. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [CrossRef] [PubMed]
  16. I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).
  17. S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Israel J. Chem. 46, 293–297 (2006).
  18. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
    [CrossRef] [PubMed]
  19. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
    [CrossRef] [PubMed]
  20. S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011).
    [CrossRef] [PubMed]
  21. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [CrossRef]
  22. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
    [CrossRef]
  23. H.T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
    [CrossRef] [PubMed]
  24. P. Yeh, Optical Waves in Layered Media (Wiley Online Library, 1988), Vol. 95.
  25. Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
    [CrossRef]
  26. K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  27. P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]

2011 (4)

M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011).
[CrossRef] [PubMed]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

2010 (4)

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

2009 (4)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

H.T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009).
[CrossRef] [PubMed]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

2008 (3)

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
[CrossRef]

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

2006 (4)

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).

S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Israel J. Chem. 46, 293–297 (2006).

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

N. Rosi and C. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef] [PubMed]

2003 (4)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

2000 (1)

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Adibi, A.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Andreani, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Arnold, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Atwater, H.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Boriskina, S.

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011).
[CrossRef] [PubMed]

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Challener, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Chamanzar, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Coronado, E.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Das, G.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Deotare, P.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Di Fabrizio, E.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Dieringer, J.

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Dluhy, R.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
[CrossRef]

El-Sayed, I.

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M.

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

Fan, X.

I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Frank, I.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Gage, E. C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Galli, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Gokemeijer, N.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Hattori, H.T.

Holler, S.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Hsia, Y.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Huang, X.

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

Itagi, A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Jin, R.

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

Ju, G.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Juan, M.

M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Karns, D.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Kelly, K.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Khan, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Klar, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Kurzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Lee, R.

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Lesuffleur, A.

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Li, Y.

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Li, Z.

Lindquist, N.

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Liu, D.

Lochel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Loncar, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Maier, S.

S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Maksymov, I.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

McCutcheon, M.

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

McFarland, A.

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Mirkin, C.

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

N. Rosi and C. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef] [PubMed]

Momeni, B.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Nagpal, P.

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Norris, D.

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Nusse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Oh, S.

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Oveys, H.

I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).

Patrini, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

Peng, C.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Peng, W.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Peng, Y.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Polman, A.

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Premaratne, M.

Qian, W.

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

Quidant, R.

M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Reinhard, B.

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011).
[CrossRef] [PubMed]

Righini, M.

M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Rosi, N.

N. Rosi and C. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef] [PubMed]

Rottmayer, R. E.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Rukhlenko, I. D.

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

Schatz, G.

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Israel J. Chem. 46, 293–297 (2006).

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

Seigler, M. A.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Shah, N.

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Sherry, L.

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

Soltani, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Sonnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Stiles, P.

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Tripp, R.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
[CrossRef]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Van Duyne, R.

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

White, I.

I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).

Xu, Y.

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Yang, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Yegnanarayanan, S.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley Online Library, 1988), Vol. 95.

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

Zhao, L.

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhao, Y.

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
[CrossRef]

Zhu, X.

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Israel J. Chem. 46, 293–297 (2006).

Annu. Rev. Anal. Chem. (1)

P. Stiles, J. Dieringer, N. Shah, and R. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. 1, 601–626 (2008).
[CrossRef]

Appl. Phys. B (1)

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications,” Appl. Phys. B 101, 263–271 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[CrossRef]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Chem. Rev. (1)

N. Rosi and C. Mirkin, “Nanostructures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005).
[CrossRef] [PubMed]

Israel J. Chem. (1)

S. Zou and G. C. Schatz, “Combining micron-size glass spheres with silver nanoparticles to produce extraordinary field enhancements for surface-enhanced Raman scattering applications,” Israel J. Chem. 46, 293–297 (2006).

J. Am. Chem. Soc. (1)

X. Huang, I. El-Sayed, W. Qian, and M. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

S. Maier and H. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Phys. Chem. B (1)

K. Kelly, E. Coronado, L. Zhao, and G. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Nano Lett. (6)

N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris, and S. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010).
[CrossRef] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. Andreani, and E. Di Fabrizio, “A Hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules,” Nano Lett. 8, 2321–2327 (2008).
[CrossRef] [PubMed]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nusse, T. Aichele, B. Lochel, C. Sonnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10, 891–895 (2010).
[CrossRef] [PubMed]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett. 3, 1057–1062 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kurzinger, “Biomolec-ular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

L. Sherry, R. Jin, C. Mirkin, G. Schatz, and R. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef] [PubMed]

Nano Today (1)

R. Tripp, R. Dluhy, and Y. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3, 31–37 (2008).
[CrossRef]

Nat. Mater. (1)

H. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. Gokemeijer, Y. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3, 220–224 (2009).
[CrossRef]

M. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5, 349–356 (2011).
[CrossRef]

Nature (2)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[CrossRef] [PubMed]

K. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. E (1)

Y. Xu, Y. Li, R. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” Proc. Natl. Acad. Sci. U.S.A. 108, 3147–3151 (2011).
[CrossRef] [PubMed]

Spectroscopy Mag. (1)

I. White, H. Oveys, and X. Fan, “Increasing the enhancement of SERS with dielectric microsphere resonators,” Spectroscopy Mag. 21, 1–5 (Apr.2006).

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley Online Library, 1988), Vol. 95.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of a hybrid plasmonic-photonic double-resonator structure consisting of a microresonator integrated with a plasmonic nanoresonator.

Fig. 2
Fig. 2

Two-dimensional schematic of a hybrid plasmonic-photonic double-resonator structure consisting of a microring resonator integrated with a plasmonic nanoresonator. Forward and backward propagating field amplitudes are indicated at different points on the structure.

Fig. 3
Fig. 3

The portion of the hybrid structure in Fig. 2 consisting of the plasmonic nanores-onator is modeled as a hybrid waveguide-based structure, which is excited from both ends.

Fig. 4
Fig. 4

(a) Reflection and (b) transmission of a bus waveguide coupled to a hybrid resonator in weak coupling regime with Qc = 107. The results are plotted for two cases, one with a nanorod and the other without a nanorod. No reflection occurs when there is no nanorod integrated with the microresonator.

Fig. 5
Fig. 5

(a) Plasmonic resonance lineshape of the gold nanorod (100nm × 56nm × 30nm) integrated with a waveguide of the same dimensions (700nm × 200nm) as those of the mi-croring resonator cross section. Coupling efficiency for a hybrid resonator with the same parameters as those used in Fig. 4, in the weak coupling regime, (a) near the LSPR resonance peak and (b) far from the LSPR resonance peak.

Fig. 6
Fig. 6

Coupling efficiency for the hybrid resonator structure discussed in Fig. 5, versus the coupling quality factor, Qc, between the waveguide and the hybrid resonator structure. The coupling efficiency is maximized at Qc = 6.7 × 103.

Fig. 7
Fig. 7

(a) Coupling efficiency spectrum over a large range of wavelengths under optimized conditions for the hybrid resonator structure discussed in Fig. 6 (i.e., Qc = 6.7 × 103). (b) The enlarged portion of the coupling efficiency spectrum near the plasmonic resonance peak, where several different modes of the hybrid structure can be seen having large coupling efficiencies.

Fig. 8
Fig. 8

Coupling efficiency as a function of the intrinsic quality factor (Q0) and the coupling quality factor (Qc) at the resonance peak wavelength of λ0 = 764.65nm. It can be seen that the coupling efficiency has a maximum at each Q0 for a specific value of Qc.

Fig. 9
Fig. 9

Coupling efficiency as a function of the intrinsic quality factor, Q0, and the coupling quality factor, Qc at the resonance peak wavelength of λ0 = 764.65nm. It can be seen that the coupling efficiency has a maximum at each intrinsic quality factor, Q0, for a specific coupling quality factor, Qc.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ b o w b 1 ] = [ t j κ j κ t * ] [ a i w a 2 ] ,
[ b i w b 2 ] = [ t j κ j κ t * ] [ a o w a 1 ] .
[ a 3 a 4 ] = [ P 1 ] [ b 1 b 2 ] ,
[ P 1 ] = [ exp ( j β L 1 α L 1 ) 0 0 exp ( + j β L 2 α L 2 ) ] .
[ a 1 a 2 ] = [ P 2 ] [ b 3 b 4 ] ,
[ a 4 b 4 ] = [ M ] [ a 3 b 3 ] ,
[ M ] = [ j r p t p 1 t p t p 2 + r p 2 t p j r p t p ] ,
b 1 a i w = j κ 1 t t p exp ( α L ) exp ( β L ) 1 t t p exp ( α L ) [ exp ( β L ) + exp ( β L ) ] + t 2 ( r p 2 + t p 2 ) ,
| k | 2 = ( | a 3 | 2 + | a 4 | 2 ) ( | b 3 | 2 + | b 4 | 2 ) | a i w | 2 .
| k | 2 = | κ | 2 1 ( t p 2 + r p 2 ) | r 2 t t p + t 2 ( t p 2 + r p 2 ) | 2 ,

Metrics