Abstract

Light propagation is simulated through coupled-resonator optical waveguides (CROWs) composed of seven transparent polystyrene microspheres, including micro-joints formed between the spheres. In nanojet-induced mode (NIM) light propagation, the micro-joints increased the optical coupling between microspheres drastically, and the light confinement by individual microspheres weakened as the micro-joint diameter increases. These results suggest that we can control NIM light propagation by changing the micro-joint diameter; this amounts to a nanojet throttle valve.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
    [CrossRef]
  2. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
    [CrossRef] [PubMed]
  3. B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005).
    [CrossRef] [PubMed]
  4. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
    [CrossRef]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  6. V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
    [CrossRef]
  7. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
    [CrossRef]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  9. J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
    [CrossRef] [PubMed]
  10. S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30(18), 2406–2408 (2005).
    [CrossRef] [PubMed]
  11. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  12. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [CrossRef] [PubMed]
  13. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14(20), 9460–9466 (2006).
    [CrossRef] [PubMed]
  14. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
    [CrossRef] [PubMed]
  15. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
    [CrossRef] [PubMed]
  16. S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
    [CrossRef]
  17. T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
    [CrossRef] [PubMed]
  18. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
    [CrossRef] [PubMed]
  19. Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
    [CrossRef] [PubMed]
  20. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, “Efficient analysis and design of low-loss WGmode coupled resonator optical waveguide bends,” J. Lightwave Technol. 25(9), 2487–2494 (2007).
    [CrossRef]
  21. S. V. Boriskina, “Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides,” Opt. Express 15(25), 17371–17379 (2007).
    [CrossRef] [PubMed]
  22. S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31(3), 338–340 (2006).
    [CrossRef] [PubMed]
  23. T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
    [CrossRef] [PubMed]
  24. M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett. 36(8), 1317–1319 (2011).
    [CrossRef] [PubMed]
  25. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
    [CrossRef]
  26. Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
    [CrossRef] [PubMed]
  27. T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
    [CrossRef]
  28. S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
    [CrossRef] [PubMed]
  29. T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
    [CrossRef]
  30. M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
    [CrossRef]

2011 (1)

2010 (1)

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

2008 (6)

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

2007 (4)

2006 (4)

2005 (5)

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30(18), 2406–2408 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005).
[CrossRef] [PubMed]

2004 (5)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
[CrossRef]

Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004).
[CrossRef] [PubMed]

2001 (1)

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Alcubilla, R.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Artemyev, M. V.

Ashili, S. P.

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14(20), 9460–9466 (2006).
[CrossRef] [PubMed]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Astratov, V. N.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[CrossRef] [PubMed]

S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, “The effects of inter-cavity separation on optical coupling in dielectric bispheres,” Opt. Express 14(20), 9460–9466 (2006).
[CrossRef] [PubMed]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Backman, V.

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Benson, T. M.

Benyoucef, M.

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Boriskina, S. V.

Chang, R. K.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Chen, Z.

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Delamarche, E.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Fenollosa, R.

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

Franchak, J. P.

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

Gates, B.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

Grego, S.

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Hayashi, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Ikeda, N.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Jarvis, T. W.

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

Kapitonov, A. M.

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Kraus, T.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Lee, R. K.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Lewis, J. S.

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Lu, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

Malaquin, L.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Marsal, L. F.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Meseguer, F.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

Mitsui, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

Möller, B. M.

Mookherjea, S.

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Oei, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Oikawa, H.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

Onodera, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Pallares, J.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Pishko, S. V.

Poon, J. K. S.

Ramiro-Manzano, F.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Rodriguez, A.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Rodriguez, I.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Ruel, R.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Scherer, A.

Scheuer, J.

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[CrossRef] [PubMed]

J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
[CrossRef]

Schmid, H.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Schmidt, O. G.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sewell, P.

Shim, J.-B.

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Spencer, N. D.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Stoner, B. R.

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

Sugimoto, Y.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Sykes, E. C. H.

Taflove, A.

Takamasu, T.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

Takaya, Y.

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Trifonov, T.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Tymczenko, M.

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

van Blaaderen, A.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Wakayama, Y.

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

Wiersig, J.

Wiltzius, P.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Woggon, U.

Wolf, H.

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xia, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

Xu, Y.

Yang, S.

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

Yariv, A.

Yin, Y.

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (4)

R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: From microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.) 20(1), 95–98 (2008).
[CrossRef]

T. Mitsui, Y. Wakayama, T. Onodera, T. Hayashi, N. Ikeda, Y. Sugimoto, T. Takamasu, and H. Oikawa, “Micro-demultiplexer of coupled resonator optical waveguide fabricated by microspheres,” Adv. Mater. (Deerfield Beach Fla.) 22(28), 3022–3026 (2010).
[CrossRef] [PubMed]

T. Kraus, L. Malaquin, E. Delamarche, H. Schmid, N. D. Spencer, and H. Wolf, “Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles,” Adv. Mater. (Deerfield Beach Fla.) 17(20), 2438–2442 (2005).
[CrossRef]

M. Tymczenko, L. F. Marsal, T. Trifonov, I. Rodriguez, F. Ramiro-Manzano, J. Pallares, A. Rodriguez, R. Alcubilla, and F. Meseguer, “Colloidal crystal wires,” Adv. Mater. (Deerfield Beach Fla.) 20(12), 2315–2318 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S. Yang and V. N. Astratov, “Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere,” Appl. Phys. Lett. 92(26), 261111 (2008).
[CrossRef]

V. N. Astratov, J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85(23), 5508–5510 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

Y. Yin, Y. Lu, B. Gates, and Y. Xia, “Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures,” J. Am. Chem. Soc. 123(36), 8718–8729 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Onodera, Y. Takaya, T. Mitsui, Y. Wakayama, and H. Oikawa, “Ordered array of polymer microspheres on patterned silicon substrate fabricated using step-by-step deposition method,” Jpn. J. Appl. Phys. 47(2), 1404–1407 (2008).
[CrossRef]

Langmuir (1)

S. Grego, T. W. Jarvis, B. R. Stoner, and J. S. Lewis, “Template-directed assembly on an ordered microsphere array,” Langmuir 21(11), 4971–4975 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Light propagation within colloidal crystal wire fabricated by a dewetting process,” Nano Lett. 8(3), 853–858 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature (3)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

T. Mitsui, Y. Wakayama, T. Onodera, Y. Takaya, and H. Oikawa, “Observation of light propagation across a 90 ° corner in chains of microspheres on a patterned substrate,” Opt. Lett. 33(11), 1189–1191 (2008).
[CrossRef] [PubMed]

M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, “Quality-factor enhancement of supermodes in coupled microdisks,” Opt. Lett. 36(8), 1317–1319 (2011).
[CrossRef] [PubMed]

A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007).
[CrossRef] [PubMed]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
[CrossRef] [PubMed]

B. M. Möller, U. Woggon, and M. V. Artemyev, “Coupled-resonator optical waveguides doped with nanocrystals,” Opt. Lett. 30(16), 2116–2118 (2005).
[CrossRef] [PubMed]

S. Mookherjea, “Dispersion characteristics of coupled-resonator optical waveguides,” Opt. Lett. 30(18), 2406–2408 (2005).
[CrossRef] [PubMed]

S. V. Boriskina, “Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules,” Opt. Lett. 31(3), 338–340 (2006).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, “Highly efficient optical coupling and transport phenomena in chains of dielectric microspheres,” Opt. Lett. 31(3), 389–391 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44(7), 475–478 (1980).
[CrossRef]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

J. Scheuer and A. Yariv, “Sagnac effect in coupled-resonator slow-light waveguide structures,” Phys. Rev. Lett. 96(5), 053901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication of microsphere CROWs by a self-assembly technique. (a) Schematic of the self-assembly technique to arrange the microspheres on a patterned substrate. The microspheres were definitely trapped in the dimples by the capillary force. (b, c) HR-SEM image of neighboring points of polystyrene and borosilicate glass microspheres, respectively. In polystyrene microspheres, neighboring microspheres are connected by a micro-joint. The diameter of a micro-joint is about 300 nm. On the other hand, in the case of borosilicate glass microspheres, micro-joints are not found.

Fig. 2
Fig. 2

Mechanism of micro-joint formation. (a) Water molecules are preserved among the chain polymer at the vicinity of the surface. (b) Microsphere is slightly swollen, and neighboring microspheres share a large area. (c) Dehydration by dewetting process. (d) Polystyrene microspheres shrink slightly, and the contact region is left as a micro-joint.

Fig. 3
Fig. 3

Spectra of propagated light in a CROW composed of a straight chain of seven microspheres. (a) Schematic of the model for FDTD simulation. The diameter of the microspheres is 2 μm. The CROW has micro-joints between neighboring microspheres. The light source and measuring point are placed as indicated in the figure. (b-c) Spectra of propagated light at the measuring point in which the diameters of micro-joints are 0 μm and 0.6 μm, respectively.

Fig. 4
Fig. 4

Influences of micro-joints in light propagation. The polarization of the light source is parallel to the Y-axis. (a) Schematic of the model for FDTD simulation. (b-e) Intensity mappings of propagating light simulated on the model in which the micro-joint diameters are 0 μm, 0.2 μm, 0.4 μm, and 0.6 μm, respectively. (f) Intensity line profiles of propagating light on the X-axis in (b) to (e).

Fig. 5
Fig. 5

Influences of micro-joints in light propagation. The polarization of the light source is parallel to the X-axis. (a) Schematic of the model for FDTD simulation. (b-e) Intensity mappings of propagating light simulated on the model in which the micro-joint diameters are 0 μm, 0.2 μm, 0.4 μm, and 0.6 μm, respectively. (f) Intensity line profiles of propagating light on the X-axis in (b) to (e).

Metrics