Abstract

We describe a photonic crystal nanocavity with multiple spatially overlapping resonances that can serve as a platform for nonlinear frequency conversion. We show nonlinear characterization of structures with two resonances nearly degenerate in frequency. We also demonstrate structures with resonances separated by up to 523 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
    [CrossRef]
  2. B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
    [CrossRef]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
    [CrossRef] [PubMed]
  4. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
    [CrossRef] [PubMed]
  5. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  6. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
    [CrossRef] [PubMed]
  7. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  8. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ? 109,” J. Lightwave Technol. 26, 1532–1539 (2008).
    [CrossRef]
  9. A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “?(2) and ?(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
    [CrossRef] [PubMed]
  10. A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
    [CrossRef]
  11. M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
    [CrossRef]
  12. I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
    [CrossRef] [PubMed]
  13. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34, 2694–2696 (2009).
    [CrossRef] [PubMed]
  14. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009).
    [CrossRef]
  15. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lon?ar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011).
    [CrossRef]
  16. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
    [CrossRef]
  17. K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
    [CrossRef]
  18. M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
    [CrossRef]
  19. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
    [CrossRef]
  20. M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
    [CrossRef] [PubMed]
  21. K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
    [CrossRef]
  22. J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  23. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
    [CrossRef]
  24. P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
    [CrossRef] [PubMed]
  25. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
    [CrossRef] [PubMed]
  26. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  27. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998).
    [CrossRef]
  28. Q. Quan, P. Deotare, and M. Lon?ar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  29. I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
    [CrossRef]
  30. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [CrossRef] [PubMed]
  31. K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
    [CrossRef]
  32. K. Rivoire, A. Faraon, and J. Vu?kovi?, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
    [CrossRef]
  33. H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).
  34. A. Faraon and J. Vu?kovi?, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
    [CrossRef]
  35. M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
    [CrossRef]
  36. M. Banaee and J. F. Young, “Squeezed state generation in photonic crystal microcavities,” Opt. Express 16, 20908–20919 (2008).
    [CrossRef] [PubMed]
  37. W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
    [CrossRef] [PubMed]
  38. K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
    [CrossRef]
  39. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
    [CrossRef] [PubMed]

2011 (5)

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lon?ar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[CrossRef]

K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
[CrossRef]

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

2010 (4)

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[CrossRef] [PubMed]

Q. Quan, P. Deotare, and M. Lon?ar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

2009 (7)

2008 (6)

2007 (3)

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “?(2) and ?(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[CrossRef] [PubMed]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

2006 (2)

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[CrossRef] [PubMed]

2005 (5)

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
[CrossRef] [PubMed]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

2004 (2)

M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Aers, G. C.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Ahmadi, E.

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Andreani, L.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Andreani, L. C.

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ? 109,” J. Lightwave Technol. 26, 1532–1539 (2008).
[CrossRef]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Atature, M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Balet, L.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Banaee, M.

Belotti, M.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Benson, O.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Bouwmeester, D.

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[CrossRef] [PubMed]

Bravo-Abad, J.

Buckley, S.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
[CrossRef]

Burgess, I. B.

Chang, D. E.

Cheung, I. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Dalacu, D.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Deotare, P.

Q. Quan, P. Deotare, and M. Lon?ar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Deotare, P. B.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lon?ar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Ellis, B.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Fan, S.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998).
[CrossRef]

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Faraon, A.

A. Faraon and J. Vu?kovi?, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vu?kovi?, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Ferra, J.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fiore, A.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Foresi, J.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fox, A.

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Francardi, M.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Frederick, S.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Frédérick, S.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Galli, M.

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[CrossRef] [PubMed]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Gerace, D.

Gerardino, A.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Guizzetti, G.

Haller, E.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Harris, J.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Hatami, F.

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

Haus, H. A.

Hayat, A.

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Hennessy, K.

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[CrossRef] [PubMed]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Hogerle, C.

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

Hu, E.

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Hugonin, J.

Hugues, M.

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Imamoglu, A.

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Ippen, E.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Irvine, W. T.

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[CrossRef] [PubMed]

Joannopoulos, J.

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

Kakitsuka, T.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Kawaguchi, Y.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Kim, H.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Kimerling, L.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Kiravittaya, S.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Krauss, T.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Krauss, T. F.

Kumar, S.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Kuramochi, E.

Lalanne, P.

Lecamp, G.

Lee, H.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Li, L.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Lin, Z.

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

Liscidini, M.

M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

Loncar, M.

Lukin, M. D.

Luxmoore, I.

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Majumdar, A.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Manolatou, C.

Masselink, W. T.

Matuso, S.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Mayer, M.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

McCutcheon, M. W.

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lon?ar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[CrossRef]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett. 34, 2694–2696 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[CrossRef] [PubMed]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009).
[CrossRef]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Mias, S.

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of ? 109,” J. Lightwave Technol. 26, 1532–1539 (2008).
[CrossRef]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Notomi, M.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
[CrossRef] [PubMed]

Nozaki, K.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

O’Faolain, L.

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[CrossRef] [PubMed]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Orenstein, M.

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Petroff, P. M.

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

Plumhof, J.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Poole, P. J.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Portalupi, S.

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Quan, Q.

Q. Quan, P. Deotare, and M. Lon?ar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Rastelli, A.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Rieger, G. W.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Rivoire, K.

K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vu?kovi?, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

Rodriguez, A.

Rodriguez, A. W.

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Sarmieno, T.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Sato, T.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Sauvan, C.

Schmidt, O.

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

Segawa, T.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Shambat, G.

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Shinya, A.

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

Skolnick, M.

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

Smith, H.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Soljacic, M.

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Steinmeyer, G.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Tanaka, Y.

Taniyama, H.

Thoen, E.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Villeneuve, P.

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Villeneuve, P. R.

Vuckovic, J.

K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
[CrossRef]

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

A. Faraon and J. Vu?kovi?, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vu?kovi?, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Welna, K.

Williams, R. L.

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Young, J. F.

M. Banaee and J. F. Young, “Squeezed state generation in photonic crystal microcavities,” Opt. Express 16, 20908–20919 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

Zhang, Y.

Appl. Phys. Lett. (14)

M. Liscidini and L. C. Andreani, “Highly efficient second-harmonic generation in doubly resonant planar microcavities,” Appl. Phys. Lett. 85, 1883–1885 (2004).
[CrossRef]

M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. Lon?ar, “High-Q transverse-electric/transverse-magnetic photonic crystal cavities,” Appl. Phys. Lett. 98, 111117 (2011).
[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, and J. Vu?kovi?, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett. 97, 043103 (2010).
[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vu?kovi?, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008).
[CrossRef]

H. Lee, S. Kiravittaya, S. Kumar, J. Plumhof, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95, 191109 (2009).

A. Faraon and J. Vu?kovi?, “Local temperature control of photonic crystal devices via micron-scale electrical heaters,” Appl. Phys. Lett. 95, 043102 (2009).
[CrossRef]

M. Galli, S. Portalupi, M. Belotti, L. Andreani, L. O’Faolain, and T. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

K. Rivoire, S. Buckley, and J. Vu?kovi?, “Multiply resonant high quality photonic crystal nanocavities,” Appl. Phys. Lett. 99, to be published (2011).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavitites,” Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Q. Quan, P. Deotare, and M. Lon?ar, “Photonic crystal nanocavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

I. Luxmoore, E. Ahmadi, A. Fox, M. Hugues, and M. Skolnick, “Unpolarized H1 photonic crystal nanocavities fabricated by stretched lattice design,” Appl. Phys. Lett. 98, 041101 (2011).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

K. Rivoire, S. Buckley, A. Majumdar, H. Kim, P. M. Petroff, and J. Vu?kovi?, “Fast quantum dot single photon source triggered at telecommunications wavelength,” Appl. Phys. Lett. 98, 083105 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultrahigh-Q photonic double heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nat. Photonics (2)

S. Matuso, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4, 648–654 (2010).
[CrossRef]

B. Ellis, M. Mayer, G. Shambat, T. Sarmieno, E. Haller, J. Harris, and J. Vu?kovi?, “Ultralow-threshold electrically pumped photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[CrossRef]

Nature (2)

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vu?kovi?, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

J. Foresi, P. Villeneuve, J. Ferra, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Opt. Express (11)

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q nanocavity with 1D photonic gap,” Opt. Express 16, 11095–11102 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136–19145 (2008).
[CrossRef]

M. Banaee and J. F. Young, “Squeezed state generation in photonic crystal microcavities,” Opt. Express 16, 20908–20919 (2008).
[CrossRef] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

P. Lalanne, S. Mias, and J. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities,” Opt. Express 13, 245–255 (2005).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G. Johnson, “?(2) and ?(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities,” Opt. Express 15, 7303–7318 (2007).
[CrossRef] [PubMed]

I. B. Burgess, Y. Zhang, M. W. McCutcheon, A. W. Rodriguez, J. Bravo-Abad, S. G. Johnson, and M. Loncar, “Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities,” Opt. Express 17, 20099–20108 (2009).
[CrossRef] [PubMed]

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vu?kovi?, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).
[CrossRef]

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009).
[CrossRef]

M. Galli, D. Gerace, K. Welna, T. F. Krauss, L. O’Faolain, G. Guizzetti, and L. C. Andreani, “Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities,” Opt. Express 18, 26613–26624 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Hayat and M. Orenstein, “Photon conversion processes in dispersive microcavities: Quantum-field model,” Phys. Rev. A 77, 013830 (2008).
[CrossRef]

Phys. Rev. B (1)

M. W. McCutcheon, J. F. Young, G. W. Rieger, D. Dalacu, S. Frédérick, P. J. Poole, and R. L. Williams, “Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers,” Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Phys. Rev. Lett. (3)

W. T. Irvine, K. Hennessy, and D. Bouwmeester, “Strong coupling between single photons in semiconductor microcavities,” Phys. Rev. Lett. 96, 057405 (2006).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi?, “Controlling the spontaneous emission rate of single quantum dots in a 2D photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005).
[CrossRef] [PubMed]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef] [PubMed]

Science (1)

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic illustration of multiply resonant orthogonal nanobeam cavity. (b) Illustration of photonic nanobeam. Red box shows unit cell, which is tiled periodically in the direction. Parameters are periodicity a, width w, hole size hx and hy and thickness out-of-plane t (not shown). (c) Wavelengths of dielectric and air bands of GaAs nanobeam as lattice constant is varied. Parameters are w/a=1.65, h 1/w=0.6, h 2/a=0.5. Solid lines are plotted for t=160 nm (fixed absolute slab thickness) and wavelength-dependent index of refraction n; dotted lines are plotted for t/a = 0.35 (fixed relative slab thickness) and n=3.37. Field patterns of Ey at kx = π/a for dielectric (top) and air band (bottom) are indicated by black circles and arrows. (d) Normalized frequencies of dielectric and air bands (left axis) of GaAs nanobeam as beam width is varied. Parameters are h 1/w=0.6, h 2/a=0.5, t/a=0.35. Right axis shows change in size of photonic band gap with beam width.

Fig. 2
Fig. 2

(a) Crossed nanobeam cavity design, showing intersecting orthogonal nanobeams with taper and mirror regions, as well as central cavity. (b) Detail of white box in (a). Parameters used to form resonance, shown for cavity in horizontal (subscript h) beam: lh indicates cavity length; dhx,N and dhy,N indicate hole sizes in mirror region; d hx,1 and d hy,1 indicate hole sizes in first taper period; ah,N indicates periodicity in mirror region; a h,1 indicates periodicity in first taper period, wh indicates beam width. The corresponding parameters are similarly introduced for the vertical beam (with subscript v). The thickness of both beams (in the z direction) is t. Parameters are changed linearly inside the taper. (c) 3D FDTD simulation of field pattern of Ey for cavity localized in horizontal beam by tapering hole dimensions and lattice constant in central region. Parameters are: ah,N = av,N =449 nm, d hx,1/dhx,N = d hy,1/dhy,N =0.5, a h,1/ah,N = a v,1/av,N =0.7, lh /ah,N = lv /av,N = 1.4, wh /ah,N = wv /av,N =1.65, dhy,N /wh = dvx,N /wv =0.7, dhx,N /ah = dvy,N /av,N =0.5, refractive index n = 3.37, with slab thickness t/ah,N =0.35, N=8, and 6 mirror periods for both beams. Resonant wavelength is 1.55 μm with Q=12,000 and V=0.44(λ/n)3. (d) Field pattern of Ex for cavity localized in vertical beam. Parameters are same as in (c).

Fig. 3
Fig. 3

(a) Scanning electron microscope image of crossbeam structures with identical parameters in both beams. Structures are fabricated by e-beam lithography, dry etching, and wet etching. (b) Experimental setup for cross-polarized reflectivity measurements to characterize cavity resonances. PBS indicates polarizing beamsplitter. Cavity polarization is oriented 45 degrees (|H + V〉) from orthogonal input (|V〉) and measurement (|H〉) polarizations. (c) Cross-polarized reflectivity measurement of structure in (a), showing two resonances at 1571.2 nm (Q=4700) and 1573.9 nm (Q=7200). Solid line indicates fit to sum of two Fano lineshapes.

Fig. 4
Fig. 4

(a) Second harmonic characterization of structure with two resonances nearly degenerate in frequency as a function of laser wavelength for 3 polarizations. Two modes with orthogonal polarization are visible. (b) Second harmonic intensity as a function of incident laser polarization. Vertical axis indicates wavelength of laser; horizontal axis indicates angle of polarization. Color indicates second harmonic intensity. Dotted horizontal lines indicate traces in (c). (c) Line plots of second harmonic generation measured at different polarizations for three laser wavelengths shown in (b). Red lines indicate fits for two cavity modes with polarizations separated by exactly 90 degrees.

Fig. 5
Fig. 5

(a) Schematic of sum frequency generation. Light from two CW lasers is coupled into two cavity resonances at 1552.8 nm and 1558.9 nm. Nonlinear frequency conversion produces light at the second harmonic frequencies of each laser, as well as at the sum frequency, 777.9 nm. (b) Sum-frequency generation from structure with resonances as indicated in (a).

Fig. 6
Fig. 6

(a) Field pattern of Ey for cavity localized in horizontal beam by tapering hole dimensions and lattice constant in central region. Parameters are: ah,N =453 nm, av,N =272 nm, d hx,1/dhx,N = d hy,1/dhy,N =0.5, a h,1/ah,N = a v,1/av,N =0.7, lh /ah,N = 1.2, lv /av,N =0.83, wh /ah,N =1.65, wv /av,N =1.8, dhy,N /wh = dvx,N /wv =0.7, dhx,N /ah = dvy,N /av,N =0.5, refractive index n = 3.37, with slab thickness t/ah,N =0.35, N=5, and 6 mirror periods for both beams. Resonant wavelength is 1.55 μm with Q=19,000 and V=0.35(λ/n)3. (b) Field pattern of Ex for cavity localized in vertical beam. Resonant wavelength is 1103 nm with Q=1900 and V=0.47(λ/n)3. (c) Change in in-plane quality factor in direction (i.e. radiated power collected at x and −x edges of simulation space) for resonance localized by vertical beam as a function of wh . (d) Tilted SEM of the fabricated structure. Scale bar corresponds to 1 μm.

Fig. 7
Fig. 7

Cross-polarized reflectivity of crossbeam structure with resonances separated by 523 nm. (a) Resonance at 1546.6 nm (Q=1600). (b) Resonance at 1023 nm (Q=500).

Fig. 8
Fig. 8

Concept illustration of doubly resonant second harmonic generation in photonic crystal crossbeam nanocavity. Incident light (red) is coupled into the structure via a grating, transmitted to the cavity, frequency converted, and outcoupled through a separate grating (green).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ ɛ N L N L d V Σ i , j , i j E 1 , i E 2 , j d V ɛ | E 1 | 2 d V ɛ | E 2 | 2

Metrics