Abstract

We present the design, fabrication and characterization of high-Q (Q=36,000) polymeric photonic crystal nanobeam cavities made of two polymers that have an ultra-low index contrast (ratio=1.15) and observed thermo-optical bistability at hundred microwatt power level. Due to the extended evanescent field and small mode volumes, polymeric nanobeam cavities are ideal platform for ultra-sensitive biochemical sensing. We demonstrate that these sensors have figures of merit (FOM=9190) two orders of magnitude greater than surface plasmon resonance based sensors, and outperform the commercial BiacoreTM sensors. The demonstration of high-Q cavity in low-index-contrast polymers can open up versatile applications using a broad range of functional and flexible polymeric materials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
    [CrossRef]
  2. M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
    [CrossRef]
  3. S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
    [CrossRef]
  4. H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
    [CrossRef]
  5. D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
    [CrossRef] [PubMed]
  6. P. Broz, (Editor) Polymer-Based Nanostructures, 1st Edition. Royal Society of Chemistry (RSC) Publishing (2010).
    [CrossRef]
  7. C. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technnigue,” J. Vac. Sci. Technol. B 20, 2862 (2002).
    [CrossRef]
  8. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).
  9. Y. Huang, G. T. Paloczi, J. Scheuer, and A. Yariv, “Soft lithography replication of polymeric microring optical resonators,” Opt. Express 11, 2452 (2003).
    [CrossRef] [PubMed]
  10. A. L. Martin, D. K. Armani, L. Yang, and K. J. Vahala, “Replica-molded high-Q polymer microresonators,” Opt. Lett. 29, 533 (2004).
    [CrossRef] [PubMed]
  11. M. Khan, T. M. Babinec, M. W. McCutcheon, P.B. Deotare, and M Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36, 421 (2011).
    [CrossRef] [PubMed]
  12. G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
    [CrossRef]
  13. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
    [CrossRef]
  14. L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
    [CrossRef]
  15. A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
    [CrossRef] [PubMed]
  16. M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
    [CrossRef]
  17. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
    [CrossRef]
  18. Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [CrossRef]
  19. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
    [CrossRef]
  20. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387 (2004).
    [CrossRef] [PubMed]
  21. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377 (2006).
    [CrossRef] [PubMed]
  22. L. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17, 21108 (2009).
    [CrossRef] [PubMed]
  23. T. Ling, S-L Chen, and L. J. Guo, “Fabrication and Characterization of High Q Polymer Micro-ring Resonator and Its Application as a Sensitive Ultrasonic Detector,” Opt. Express 19, 861–869 (2011)
    [CrossRef] [PubMed]
  24. D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
    [CrossRef]
  25. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, “Holographic Recording of Bragg Gratings for Wavelength Division Multiplexing in Doped and Partially Polymerized Poly(methyl methacrylate),” Appl. Opt. 42, 30 (2003).
    [CrossRef] [PubMed]
  26. W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
    [CrossRef]
  27. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
    [CrossRef] [PubMed]
  28. A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
    [CrossRef]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020 (2008).
    [CrossRef] [PubMed]
  30. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
    [CrossRef] [PubMed]
  31. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
    [CrossRef] [PubMed]

2011

2010

G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
[CrossRef]

2009

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

L. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17, 21108 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

2008

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
[CrossRef]

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

2006

2005

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
[CrossRef]

2004

2003

2002

C. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technnigue,” J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

2001

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

1979

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

1978

A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
[CrossRef]

Adawi, A. M.

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

Almeida, V. R.

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Antognazza, M. R.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Arakawa, Y.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
[CrossRef]

Armani, D. K.

Asano, T.

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Babin, S.

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Babinec, T. M.

Basedow, A. M.

A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
[CrossRef]

Benfenati, F.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Beyer, O.

Boreman, G.

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Broz, P.

P. Broz, (Editor) Polymer-Based Nanostructures, 1st Edition. Royal Society of Chemistry (RSC) Publishing (2010).
[CrossRef]

Buse, K.

Carbone, L.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Chao, C.

C. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technnigue,” J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

Chen, H-Y.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Chen, S-L

Choi, M. C.

M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
[CrossRef]

Chu, D.

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Cingolani, R.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Dalton, L. R.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).

De Vittorio, M.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
[CrossRef]

Deotare, P.B.

ebert, K. H.

A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
[CrossRef]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Fan, X.

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Folks, W. R.

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Fry, P. W.

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

Garmire, E.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Ghezzi, D.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Ginn, J.

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Gong, G.

G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

Goodson, K. E.

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Guo, L. J.

Ha, C-S.

M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
[CrossRef]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Haret, L.

Havermeyer, F.

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Hou, J.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Huang, Y.

Iwamoto, S.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
[CrossRef]

Jen, A. K. Y.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Jo, J.

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Khan, M.

Kim, D-Y

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

Kim, S-S.

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

Kim, Y.

M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
[CrossRef]

Kitamura, M.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
[CrossRef]

Kuramochi, E.

Lanzani, G.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Lanzarini, E.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Li, G.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Liang, Y.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Lidzey, D. G.

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

Ling, T.

Lipson, M.

Loncar, M

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Ma, H.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

Manna, L.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Marburger, J. H.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Martin, A. L.

Martiradonna, L.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Maschio, M. D.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

McCutcheon, M. W.

Murshidy, M. M.

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

Na, S-I.

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

Nee, I.

Noda, S.

Notomi, M.

Paloczi, G. T.

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Pease, R. F.

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Quan, Q.

Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
[CrossRef]

Rabiei, P.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).

Ruland, U.

A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
[CrossRef]

Scheuer, J.

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Shelton, D.

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Song, B. S.

Steier, W. H.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).

Sun, Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Tanabe, T.

Tandaechanurat, A.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Tharp, J.

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Touzelbaev, M.

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Uesugi, T.

Vahala, K. J.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Vuckovic, J.

G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

White, I. M.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020 (2008).
[CrossRef] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Winful, H. G.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

Wu, Y.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Yang, G.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Yang, L.

Yang, Y.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Yariv, A.

Yu, L.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Zhang, C.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).

Zhang, S.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

ACS Nano

A. M. Adawi, M. M. Murshidy, P. W. Fry, and D. G. Lidzey, “An optical nanocavity incorporating a fluorescent organic dye having a high quality factor,” ACS Nano 4, 3039–3044 (2010).
[CrossRef] [PubMed]

Adv. Mater.

H. Ma, A. K. Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater. 14, 1339–1365 (2002).
[CrossRef]

S-I. Na, S-S. Kim, J. Jo, and D-Y Kim, “Efficient and Flexible ITO-Free Organic Solar Cells Using Highly Conductive Polymer Anodes,” Adv. Mater. 20, 4061–4067 (2008).
[CrossRef]

Anal. Chim. Acta

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379 (1979).
[CrossRef]

M. M. Murshidy, A. M. Adawi, P. W. Fry, and D. G. Lidzey, “A one-dimensional photonic-crystal nanocavity incorporating a fluorescent molecular dye,” Appl. Phys. Lett. 97, 153303 (2010).
[CrossRef]

G. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96, 031107 (2010).
[CrossRef]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2005).
[CrossRef]

Appl. Phys. Letts.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Letts. 96, 203102 (2010).
[CrossRef]

J. Lightwave Technol.

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer Micro-Ring Filters and Modulators,” J. Lightwave Technol. 20, 1968 (2002).

J. Vac. Sci. Technol. B

C. Chao and L. J. Guo, “Polymer microring resonators fabricated by nanoimprint technnigue,” J. Vac. Sci. Technol. B 20, 2862 (2002).
[CrossRef]

D. Chu, M. Touzelbaev, K. E. Goodson, S. Babin, and R. F. Pease, “Thermal conductivity measurements of thin film resist,” J. Vac. Sci. Technol. B 19, 2874 (2001).
[CrossRef]

Makromol. Chem.

A. M. Basedow, K. H. ebert, and U. Ruland, “Specific Refractive Index Increments of Dextran Fractions of Different Molecular Weights,” Makromol. Chem. 179, 1351–1353 (1978).
[CrossRef]

Nano Lett.

L. Martiradonna, L. Carbone, A. Tandaechanurat, M. Kitamura, S. Iwamoto, L. Manna, M. De Vittorio, R. Cingolani, and Y. Arakawa, “Two-dimensional photonic crystal resist membrane nanocavity embedding colloidal dot-in-a-rod nanocrystals,” Nano Lett. 8, 260 (2008).
[CrossRef]

Nat. Commun.

D. Ghezzi, M. R. Antognazza, M. D. Maschio, E. Lanzarini, F. Benfenati, and G. Lanzani, “A hybrid bioorganic interface for neuronal photoactivation,” Nat. Commun. 2:166 (2011).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442 (2008).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[CrossRef] [PubMed]

Nat. Photon.

H-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li. “Polymer solar cells with enhanced open-circuit voltage and effciency,” Nat. Photon. 3, 649–653 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Stat. Sol. (c)

W. R. Folks, J. Ginn, D. Shelton, J. Tharp, and G. Boreman, “Spectroscopic ellipsometry of materials for infrared micro-device fabrication,” Phys. Stat. Sol. (c) 5, 1113 (2008).
[CrossRef]

Prog. Polym. Sci.

M. C. Choi, Y. Kim, and C-S. Ha, “Polymers for flexible displays: From material selection to device applications,” Prog. Polym. Sci. 33, 581–630 (2008).
[CrossRef]

Other

P. Broz, (Editor) Polymer-Based Nanostructures, 1st Edition. Royal Society of Chemistry (RSC) Publishing (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Energy density distribution of the cavity mode from FDTD simulation. (b) Scanning electron micrograph of the polymeric nanobeam cavity. (c) Schematics of the measurement setup. A tunable laser source is coupled to the edge of the chip through a tapered fiber (TF, Ozoptics inc.) after the fiber polarization controller (FPC), and collected from tapered fiber followed by a second FPC and an inline polarizer (Pol) to the detector. The two FPCs are to filter out unwanted TM polarization component that is not in resonance with the cavity.

Fig. 2
Fig. 2

(a) Measured optical transmission spectrum of a high-transmission polymeric nanobeam cavity in D2O. The cavity mode has Q=11,000 with a high on-resonance transmission 15%. (b) The experimental transmission spectrum of a different cavity with the highest measured Q, with on resonance transmission of 6%. Q of 36,000 is extracted from Lorentzian fit. (c) Comparison of theoretical Q factors and mode volumes between PhC nanobeam cavities and ring resonators with the same waveguide dimension: 3.2μm × 0.5μm, and the same material platform. Mode Volumes are normalized by (λ/nZEP)3. The number of tapered hole pairs in the nanobeam cavities are varied from 45 to 60, with an additional 50 hole pairs on both ends of the tapered section. The radii of the rings are varied from 25μm to 80μm. (d) Transmission spectra of the cavity mode at different input powers, showing optical bistability. The power levels indicated in the legend correspond to the powers coupled into the on-chip waveguide. The laser wavelength was swept from shorter to longer wavelengths across the cavity resonance.

Fig. 3
Fig. 3

(a) The real-time response of the resonance shift in response to the infusion of pure DI water, and glucose solutions with concentrations of 10mg/dL and 20mg/dL. (b) Equilibrated resonance shifts in different concentrations of glucose solutions in DI water measured by the nanobeam sensor and BiacoreTM 3000 instrument respectively. The Bi-acore chip was functionalized with (11-Mercaptoundecyl)tetra(ethylene glycol) to prevent adsorption of molecules on the gold surface to insure the measured responses are due to the bulk glucose index change.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ λ = 2 T Q total / Q abs d λ d n d n dT R th P in

Metrics