Abstract

We use photorefractive two-wave mixing for coherent amplification of the object beam in digital holographic recording. Both amplitude and phase reconstruction benefit from the prior amplification as they have an increased SNR. We experimentally verify that the amplification process does not affect the phase of the wavefield. This allows for digital holographic phase analysis after amplification. As the grating formation in photorefractive crystals is just driven by coherent light, the crystal works as a coherence gate. Thus the proposed combination allows for applying digital holography for imaging through scattering media, after the image bearing light is coherence gated and filtered out of scattered background. We show experimental proof-of principle results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. K. A. Stetson, “Holographic fog penetration,” J. Opt. Soc. Am. 57(8), 1060–1061 (1967).
    [CrossRef]
  3. P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 1”, Topics in Applied Physics Volume 61, Springer (1988).
  4. P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 2,” Topics in Applied Physics Volume 62, (Springer 1988).
  5. N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
    [CrossRef] [PubMed]
  6. U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [CrossRef] [PubMed]
  7. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
    [CrossRef]
  8. F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
    [CrossRef] [PubMed]
  9. G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
    [CrossRef]
  10. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), R61–R72 (2002).
    [CrossRef]
  11. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
    [CrossRef] [PubMed]
  12. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
    [CrossRef]
  13. Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).
  14. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [CrossRef] [PubMed]
  15. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
    [CrossRef] [PubMed]
  16. E. Leith and J. Upatnieks, “Microscopy by wavefront reconstruction,” J. Opt. Soc. Am. 55(5), 569–570 (1965).
    [CrossRef]
  17. C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
    [CrossRef]
  18. G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
    [CrossRef] [PubMed]
  19. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  20. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
    [CrossRef] [PubMed]
  21. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70(1), 151–154 (2000).
    [CrossRef]
  22. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
    [CrossRef] [PubMed]
  23. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331–1333 (1995).
    [CrossRef] [PubMed]
  24. A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998).
    [CrossRef]
  25. P. Yeh, “Two-wave Mixing in Nonlinear Media,” IEEE J. Quantum Electron. 25(3), 484–519 (1989).
    [CrossRef]
  26. M. Chi, J. P. Huignard, and P. M. Petersen, “A general theory of two-wave mixing in nonlinear media,” J. Opt. Soc. Am. B 26(8), 1578–1584 (2009).
    [CrossRef]
  27. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).
  28. A. Brignon and J. P. Huignard, “Rhodium-doped barium titanate for beam control of neodymium lasers,” Pure Appl. Opt. 7(2), 257–270 (1998).
    [CrossRef]
  29. T. Omatsu, M. J. Damzen, A. Minassian, and K. Kuroda, “Solid-State Lasers with a Photorefractive Phase-Conjugate Mirror”, in Photorefractive Materials and Their Applications 3 (Springer, Berlin 2007).
  30. E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
    [CrossRef] [PubMed]
  31. B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
    [CrossRef]
  32. G. Pauliat, N. Dubreuil and G. Roosen, “Self organizing laser cavities”, Photorefractive Materials and Their Applications 3 (Springer 2007).
  33. D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989).
    [CrossRef]
  34. J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).
  35. H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14(22), 1275–1277 (1989).
    [CrossRef] [PubMed]
  36. J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
    [CrossRef]
  37. S. Breugnot, D. Dolfi, H. Rajbenbach, J. P. Huignard, and M. Defour, “Enhancement of the signal-to-background ratio in photorefractive two-wave mixing by mutually incoherent two-beam coupling,” Opt. Lett. 19(14), 1070–1072 (1994).
    [CrossRef] [PubMed]
  38. H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992).
    [CrossRef]
  39. X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).
  40. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
    [CrossRef] [PubMed]
  41. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6 crystal,” Opt. Lett. 35(11), 1798–1800 (2010).
    [CrossRef]
  42. P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).
  43. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  44. J. W. Goodman, Introduction to Fourier-Optics, 2nd Ed. (Mc Graw Hill, 1996).
  45. N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23Issue 23), 21015–21029 (2009).
    [CrossRef] [PubMed]
  46. G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996).
    [CrossRef]
  47. G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991).
    [CrossRef]
  48. B. R. Hunt, “Matrix formulation of the reconstruction of phase values from phase differences,” J. Opt. Soc. Am. 69(3), 393–399 (1979).
    [CrossRef]
  49. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006).
    [CrossRef] [PubMed]
  50. A. Pecchia, M. Laurito, P. Apai, and M. B. Danailov, “Studies of two-wave mixing of very broad-spectrum laser,” J. Opt. Soc. Am. B 16(6), 917 (1999).
    [CrossRef]
  51. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
    [CrossRef] [PubMed]

2010 (3)

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6 crystal,” Opt. Lett. 35(11), 1798–1800 (2010).
[CrossRef]

2009 (3)

2007 (1)

2006 (2)

2005 (3)

2004 (3)

2003 (3)

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), R61–R72 (2002).
[CrossRef]

2001 (1)

2000 (3)

1999 (2)

A. Pecchia, M. Laurito, P. Apai, and M. B. Danailov, “Studies of two-wave mixing of very broad-spectrum laser,” J. Opt. Soc. Am. B 16(6), 917 (1999).
[CrossRef]

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

1998 (2)

A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998).
[CrossRef]

A. Brignon and J. P. Huignard, “Rhodium-doped barium titanate for beam control of neodymium lasers,” Pure Appl. Opt. 7(2), 257–270 (1998).
[CrossRef]

1997 (1)

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

1996 (1)

G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996).
[CrossRef]

1995 (1)

1994 (2)

1992 (1)

H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992).
[CrossRef]

1991 (1)

G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991).
[CrossRef]

1990 (1)

J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
[CrossRef]

1989 (4)

P. Yeh, “Two-wave Mixing in Nonlinear Media,” IEEE J. Quantum Electron. 25(3), 484–519 (1989).
[CrossRef]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
[CrossRef]

D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989).
[CrossRef]

H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14(22), 1275–1277 (1989).
[CrossRef] [PubMed]

1987 (1)

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

1986 (1)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).

1979 (1)

1967 (1)

1965 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Anderson, D. Z.

D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989).
[CrossRef]

Ansari, Z.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
[CrossRef] [PubMed]

Apai, P.

Asundi, A. K.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Atlan, M.

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[CrossRef] [PubMed]

Barry, N. P.

Boccara, A. C.

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[CrossRef] [PubMed]

Breede, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

Breugnot, S.

Brignon, A.

A. Brignon and J. P. Huignard, “Rhodium-doped barium titanate for beam control of neodymium lasers,” Pure Appl. Opt. 7(2), 257–270 (1998).
[CrossRef]

Carl, D.

Charrière, F.

Chi, M.

Colomb, T.

Cuche, E.

Dainty, J. C.

Danailov, M. B.

Darakis, E.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Defour, M.

Delaye, P.

Delboulbé, A.

Depeursinge, C.

Depeursinge, C. D.

Dolfi, D.

Dunsby, C.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Ehmann, M.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Emery, Y.

Fainman, Y.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).

Farahi, S.

Feinberg, J.

D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989).
[CrossRef]

Fischer, B.

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
[CrossRef]

Forget, B. C.

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[CrossRef] [PubMed]

French, P. M. W.

Fröning, P.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gerhardt, N. C.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23Issue 23), 21015–21029 (2009).
[CrossRef] [PubMed]

Gilbreath, G. C.

G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996).
[CrossRef]

Goodman, J.

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

Grabar, A. A.

Gross, M.

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12(22), 5469–5474 (2004).
[CrossRef] [PubMed]

Gu, Y.

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
[CrossRef] [PubMed]

Hackl, K.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Hamann, S.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Hesselink, L.

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), R61–R72 (2002).
[CrossRef]

Hofmann, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

Hofmann, M. R.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23Issue 23), 21015–21029 (2009).
[CrossRef] [PubMed]

Huignard, J. P.

Huignard, J.-P.

Hunt, B. R.

Hyde, S. C. W.

Indebetouw, G.

Jagannath, H.

H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992).
[CrossRef]

Jeong, K.

Jericho, M. H.

Jiang, M.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Jones, R.

Joseph, J.

J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
[CrossRef]

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

Kariwala, V.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Kasseck, C.

Kemper, B.

Khanam, T.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Kim, M. K.

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).

Klein, M. B.

Klysubun, P.

Köber, S.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

Koukourakis, N.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

N. Koukourakis, C. Kasseck, D. Rytz, N. C. Gerhardt, and M. R. Hofmann, “Single-shot holography for depth resolved three dimensional imaging,” Opt. Express 17(23Issue 23), 21015–21029 (2009).
[CrossRef] [PubMed]

Kowarschik, R.

G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991).
[CrossRef]

Kreuzer, H. J.

Kühn, J.

Lai, Y. W.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Laurito, M.

Lee, S. H.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).

Leith, E.

Ludwig, A.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Luo, H.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Marquet, P.

Massatsch, P.

McRuer, R.

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

Meerholz, K.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

Meinertzhagen, I. A.

Melloch, M. R.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
[CrossRef] [PubMed]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70(1), 151–154 (2000).
[CrossRef]

Meyer, R.

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

Montemezzani, G.

Montfort, F.

Mu, X.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Mustata, M.

Naughton, T. J.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Nolte, D. D.

Notni, G.

G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991).
[CrossRef]

Obara, M.

A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998).
[CrossRef]

Odoulov, S.

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Pecchia, A.

Pedrini, G.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Peng, L.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Petersen, P. M.

Pillai, P. K. C.

J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
[CrossRef]

Podivilov, E.

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Rajbenbach, H.

Rajendran, A.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Ramaz, F.

Reintjes, J. F.

G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996).
[CrossRef]

Roosen, G.

Rytz, D.

Salvador, M.

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

Santos, P.

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

Santoyo, F. M.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

Shao, Z.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Shiratori, A.

A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998).
[CrossRef]

Shumelyuk, A.

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Singh, K.

J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
[CrossRef]

Sternklar, S.

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
[CrossRef]

Stetson, K. A.

STurman, B.

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Tiziani, H. J.

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

Turek, J. J.

Tziraki, M.

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
[CrossRef] [PubMed]

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70(1), 151–154 (2000).
[CrossRef]

Upatnieks, J.

Venkateswarlu, P.

H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992).
[CrossRef]

von Bally, G.

Wechsler, B. A.

Weible, K.

Weiss, S.

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
[CrossRef]

Wernicke, G.

Wilde, J.

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

Xu, W.

Xu, X.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Yeh, P.

P. Yeh, “Two-wave Mixing in Nonlinear Media,” IEEE J. Quantum Electron. 25(3), 484–519 (1989).
[CrossRef]

Yu, L.

Yu, P.

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

Zhong, W.

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

A.Phys.L. (1)

X. Mu, X. Xu, Z. Shao, M. Jiang, H. Luo, and W. Zhong, “Contradirectional two-wave mixing in Rh-doped BaTiO3,” A.Phys.L. 71, 8 (1997).

Appl. Opt. (8)

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006).
[CrossRef] [PubMed]

U. Schnars and W. P. O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

F. Charrière, J. Kühn, T. Colomb, F. Montfort, E. Cuche, Y. Emery, K. Weible, P. Marquet, and C. Depeursinge, “Characterization of microlenses by digital holographic microscopy,” Appl. Opt. 45(5), 829–835 (2006).
[CrossRef] [PubMed]

D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
[CrossRef] [PubMed]

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46(22), 4999–5008 (2007).
[CrossRef] [PubMed]

P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, “Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids,” Appl. Opt. 43(25), 4862–4873 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, “Photorefractive holography for imaging through turbid media using low coherence light,” Appl. Phys. B 70(1), 151–154 (2000).
[CrossRef]

Chem. Eng. Sci. (1)

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci. 65(2), 1037–1044 (2010).
[CrossRef]

Electron. Lett. (1)

N. Koukourakis, M. Breede, N. C. Gerhardt, M. Hofmann, S. Köber, M. Salvador, and K. Meerholz, “Depth resolved holographic imaging with variable depth resolution using spectrally tunable diode laser,” Electron. Lett. 45(1), 46 (2009).
[CrossRef] [PubMed]

IEEE ASME J. of Microelectromechan. Syst. (1)

Y. W. Lai, N. Koukourakis, N. C. Gerhardt, M. R. Hofmann, R. Meyer, S. Hamann, M. Ehmann, K. Hackl, E. Darakis, and A. Ludwig, “Integrity of micro-hotplates during high-temperature operation monitored by digital holographic microscopy,” IEEE ASME J. of Microelectromechan. Syst. 19(4), 1–5 (2010).

IEEE J. Quantum Electron. (4)

P. Yeh, “Two-wave Mixing in Nonlinear Media,” IEEE J. Quantum Electron. 25(3), 484–519 (1989).
[CrossRef]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive Oscillators,” IEEE J. Quantum Electron. 25(3), 550–569 (1989).
[CrossRef]

D. Z. Anderson and J. Feinberg, “Optical Novelty Filters,” IEEE J. Quantum Electron. 25(3), 635–647 (1989).
[CrossRef]

G. Notni and R. Kowarschik, “Theory of amplitude and phase effects in 2D- Two-wave-mixing,” IEEE J. Quantum Electron. 27(9), 2193–2200 (1991).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (2)

Meas. Sci. Technol. (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–R101 (2002).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13(7), R61–R72 (2002).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

G. C. Gilbreath and J. F. Reintjes, “Photorefractive Fourier-image amplification for low light level image detection,” Microw. Opt. Technol. Lett. 12(3), 119–123 (1996).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (4)

G. Pedrini, P. Fröning, H. J. Tiziani, and F. M. Santoyo, “Shape measurement of microscopic structures using digital holograms,” Opt. Commun. 164(4-6), 257–268 (1999).
[CrossRef]

C. Dunsby, Y. Gu, Z. Ansari, P. M. W. French, L. Peng, P. Yu, M. R. Melloch, and D. D. Nolte, “High-speed depth-sectioned wide-field imaging using low-coherence photorefractive holographic microscopy,” Opt. Commun. 219(1-6), 87–99 (2003).
[CrossRef]

J. Joseph, P. K. C. Pillai, and K. Singh, “A novel way of noise reduction in image amplification by two-beam coupling in photorefractive BaTiO3 crystals,” Opt. Commun. 80(1), 84–88 (1990).
[CrossRef]

H. Jagannath and P. Venkateswarlu, “Effect of counterpropagating beams on fanning in BaTiO3,” Opt. Commun. 91(5-6), 509–519 (1992).
[CrossRef]

Opt. Eng. (1)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 2 (1986).

Opt. Express (2)

Opt. Lett. (8)

S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6 crystal,” Opt. Lett. 35(11), 1798–1800 (2010).
[CrossRef]

Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6Issue 6), 334–336 (2001).
[CrossRef] [PubMed]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, and B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20(11), 1331–1333 (1995).
[CrossRef] [PubMed]

S. Breugnot, D. Dolfi, H. Rajbenbach, J. P. Huignard, and M. Defour, “Enhancement of the signal-to-background ratio in photorefractive two-wave mixing by mutually incoherent two-beam coupling,” Opt. Lett. 19(14), 1070–1072 (1994).
[CrossRef] [PubMed]

H. Rajbenbach, A. Delboulbé, and J. P. Huignard, “Noise suppression in photorefractive image amplifiers,” Opt. Lett. 14(22), 1275–1277 (1989).
[CrossRef] [PubMed]

G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25(4), 212–214 (2000).
[CrossRef] [PubMed]

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30(16), 2092–2094 (2005).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

E. Podivilov, B. STurman, A. Shumelyuk, and S. Odoulov, “Light Pulse Slowing Down upto 0.025cm/s by Photorefractive Two-wave Coupling,” Phys. Rev. Lett. 91(8), 083902 (2003).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Wilde, R. McRuer, L. Hesselink, and J. Goodman, “Dynamic holographic interconnections using photorefractive crystals,” Proc. SPIE 752, 200 (1987).

P. Santos, M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Acousto-optic imaging with a digital holography scheme: new scheme to obtain axial resolution,” Proc. SPIE 5864, 1–6 (2005).

Pure Appl. Opt. (1)

A. Brignon and J. P. Huignard, “Rhodium-doped barium titanate for beam control of neodymium lasers,” Pure Appl. Opt. 7(2), 257–270 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Shiratori and M. Obara, “Photorefractive coherence gated interferometry,” Rev. Sci. Instrum. 69(11), 3741–3745 (1998).
[CrossRef]

Other (5)

T. Omatsu, M. J. Damzen, A. Minassian, and K. Kuroda, “Solid-State Lasers with a Photorefractive Phase-Conjugate Mirror”, in Photorefractive Materials and Their Applications 3 (Springer, Berlin 2007).

G. Pauliat, N. Dubreuil and G. Roosen, “Self organizing laser cavities”, Photorefractive Materials and Their Applications 3 (Springer 2007).

P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 1”, Topics in Applied Physics Volume 61, Springer (1988).

P. Günter and J.-P. Huignard, “Photorefractive Materials and their Applications 2,” Topics in Applied Physics Volume 62, (Springer 1988).

J. W. Goodman, Introduction to Fourier-Optics, 2nd Ed. (Mc Graw Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Recording of the index grating in transmission geometry. Object beam I1 (red) and pump beam I2 (purple) interfere within the crystal. The interference pattern creates a shifted index grating with the grating spacing Λ. + c denotes the positive c-axis of the crystal. The shift between the intensity and index grating leads to a coupling of the two beams. The weak object beam with the intensity I1 is amplified by a factor γ’.

Fig. 2
Fig. 2

Sketch of the setup for two-wave mixing (path lengths not to scale).

Fig. 3
Fig. 3

Image without amplification (left), and amplified image (gain = 850) (right).

Fig. 4
Fig. 4

First row: a) Image, b) same image with decreased intensity, c+d) amplified images (γ=100) with slightly misaligned (c) and aligned (d) pump beam. Second row: The ‘4’ can be resolved without (e) but gets blurred with amplification (f).

Fig. 5
Fig. 5

The fringe visibility before (left) and after amplification (right).

Fig. 6
Fig. 6

Sketch of the setup for digital holography (path lengths not to scale).

Fig. 7
Fig. 7

Reconstructed digital holograms of the metallic island. Amplitude reconstruction (left), phase (middle) and unwrapped phase (right)

Fig. 8
Fig. 8

Comparison of profiles obtained by digital holography and by a profilometer scan (left). Height mismatch of both profiles (right).

Fig. 9
Fig. 9

Reconstructed digital holograms of the metallic island with a diffuser plate in the beam path. Amplitude reconstruction (left), wrapped phase (middle) and unwrapped phase (right)

Fig. 10
Fig. 10

Sketch of the setup for amplified digital holography. The inset marked with b) shows components that replace the marked part of the setup in later experiments (path lengths not to scale).

Fig. 11
Fig. 11

Reconstructed amplitude without amplification (left), and with amplification (γ = 20) (right). The SNR of the reconstructed amplitude is clearly enhanced.

Fig. 12
Fig. 12

Intensity of the line plot marked in the reconstructed Fig. 11 without amplification (black), and with amplification (red). The SNR of the reconstructed amplitude is clearly enhanced.

Fig. 13
Fig. 13

Height mismatch obtained analyzing the linescans across the sample surface for amplified digital holography and non amplified digital holography.

Fig. 14
Fig. 14

Simulated influence of the beam ratios on the modulation-depth with and without amplification for (k = 50 and negligible Icohscatt) (left). Comparison of the influence of a highly coherent source and a low-coherent source on the results(right).

Fig. 15
Fig. 15

left: Object beam through diffuser. right: Object beam through diffuser and with two-wave mixing amplification.

Fig. 16
Fig. 16

Line-scan across the acquired hologram with blocked and unblocked two-wave mixing pumping through the diffuser. The modulation depth of the amplified interference is clearly enhanced.

Fig. 17
Fig. 17

left: Reconstructed amplitude of the object beam through the diffuser.middle: Reconstructed amplitude of the object beam through the diffuser with two-wave mixing amplification. right: Comparison of reconstructed intensities across the marked red lines.

Fig. 18
Fig. 18

Line-scan across pure vs. reconstructed amplitude of amplified object beam. The image that is amplified with two-wave mixing benefits of the digital holographic capability of coherent amplification, when weak object beams are recorded with intense reference beams.

Fig. 19
Fig. 19

. First row: without amplification. Second row: with amplification. And from left to right: wrapped phase and unwrapped phase.

Fig. 20
Fig. 20

. (left) Comparison of profiles obtained by digital holography and amplified digital holography through the diffuser. (right) Height mismatch of both profiles. The unwrapping in this case was performed manually.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δn= 1 2 r eff n 3 E SC ,
d dz I 1 =γ' I 1 I 2 I 1 + I 2 α I 1
d dz I 2 =γ' I 1 I 2 I 1 + I 2 +α I 2
γ'= 2πΔn λcosθ sinϕ
H ˜ ( k x , k y ,d)= H ˜ ( k x , k y ,0)exp(j k z d),
d dz ψ 2 =β I 1 I 1 + I 2
β= πΔn λcosθ cosϕ,
H( k x , k y ,0)= h(x,y,0)exp[j( k x x+ k y y)] dxdy
h ˜ (x,y,0)= H ˜ ( k x , k y ,0)exp[+j( k x x+ k y y)] d k x d k y .
H ˜ ( k x , k y ,d)= H ˜ ( k x , k y ,0)exp(j k z d),
h ˜ (x,y,d)= H ˜ ( k x , k y ,d)exp[+j( k x x+ k y y)] d k x d k y .
γ coh1 = 1+ zc q (k(q+1)+q+1) 1+ zc q (k(q+1)+q+1) e γ'L ; γ coh2 = 1+zc(k(q+1)+q+1) 1+zc(k(q+1)+q+1) e γ'L
m= 2 γ coh1 c(k+ γ coh1 ) γ coh1 +c(k+ γ coh1 )+k

Metrics