Abstract

We consider a problem of laser radiation propagating in a medium with birefringence of two types: linear birefringence independent of intensity and polarization, and intensity and polarization dependent circular birefringence caused by cubic nonlinearity. It is shown theoretically and experimentally that the efficiency of the broadly employed method of linear depolarization compensation by means of a 90° polarization rotator decreases with increasing В-integral (nonlinear phase incursion induced by cubic nonlinearity). The accuracy of polarization transformation by means of a half-wave and a quarter-wave plate also decreases if В > 1. By the example of a λ/4 plate it is shown that this parasitic effect may be suppressed considerably by choosing an optimal angle of inclination of the optical axis of the plate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008).
    [CrossRef]
  2. A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
    [CrossRef]
  3. W. Koechner, Solid-state laser engineering (Berlin: Springer, 1999).
  4. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers (Leningrad: Mashinostroenie, 1986).
  5. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
    [CrossRef]
  6. L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
    [CrossRef]
  7. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
    [CrossRef]
  8. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [CrossRef]
  9. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
    [CrossRef]
  10. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [CrossRef] [PubMed]
  11. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
    [CrossRef] [PubMed]
  12. M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
    [CrossRef]
  13. E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [CrossRef]
  14. A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
    [CrossRef]
  15. K. Sh. Mustaev, V. A. Serebrykov, and V. E. Yashin, JETP Lett. 14, 856–859 (1980).
  16. S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
    [CrossRef]
  17. Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).
  18. P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
    [CrossRef]
  19. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).
  20. D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977).
    [CrossRef]
  21. W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
    [CrossRef]
  22. M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express 18(12), 12839–12851 (2010).
    [CrossRef] [PubMed]
  23. G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).
  24. A. A. Kuzmin, E. A. Khazanov, and A. A. Shaykin, “Large-aperture Nd:glass laser amplifiers with high pulse repetition rate,” Opt. Express 19(15), 14223–14232 (2011).
    [CrossRef] [PubMed]
  25. A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
    [CrossRef]
  26. A. P. Voitovich and V. N. Severikov, Lasers with anisotropic resonators (Minsk: Nauka e technika, 1988)
  27. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
    [CrossRef]
  28. A. A. Jaecklin and M. Lietz, “Elimination of disturbing birefringence effects on faraday rotation,” Appl. Opt. 11(3), 617–621 (1972).
    [CrossRef] [PubMed]

2011

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

A. A. Kuzmin, E. A. Khazanov, and A. A. Shaykin, “Large-aperture Nd:glass laser amplifiers with high pulse repetition rate,” Opt. Express 19(15), 14223–14232 (2011).
[CrossRef] [PubMed]

2010

2009

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

2008

E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008).
[CrossRef]

2005

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

2004

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

2003

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).

2002

1982

S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
[CrossRef]

1980

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

1979

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

1977

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977).
[CrossRef]

1972

1971

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
[CrossRef]

1970

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).

1969

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

1966

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).

1964

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[CrossRef]

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Andreev, N.

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Auric, D.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977).
[CrossRef]

Berkhoer, A. L.

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).

Chen, F. S.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

de Wit, M.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[CrossRef]

Fibich, G.

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).

Gonoskov, A. A.

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

Ilan, B.

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Ivanov, I. A.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

Jaecklin, A. A.

Kagan, M. A.

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

Katin, E. V.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Khazanov, E.

Khazanov, E. A.

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

A. A. Kuzmin, E. A. Khazanov, and A. A. Shaykin, “Large-aperture Nd:glass laser amplifiers with high pulse repetition rate,” Opt. Express 19(15), 14223–14232 (2011).
[CrossRef] [PubMed]

M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express 18(12), 12839–12851 (2010).
[CrossRef] [PubMed]

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008).
[CrossRef]

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27(9), 716–718 (2002).
[CrossRef] [PubMed]

Kirsanov, A. V.

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Kochetkova, M. S.

Koechner, W.

Korzhimanov, A. V.

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

Kryzhanovskii, V. I.

S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
[CrossRef]

Kuzmin, A. A.

Labadens, A.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977).
[CrossRef]

Lietz, M.

Luchinin, G. A.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[CrossRef]

Mal’shakov, A. N.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Mal'shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Mart’yanov, M. A.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Martyanov, M. A.

M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express 18(12), 12839–12851 (2010).
[CrossRef] [PubMed]

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

Matveev, A. Z.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Mehl, O.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Mukhin, I. B.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

Palashov, O.

Palashov, O. V.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Potemkin, A. K.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Poteomkin, A.

Poteomkin, A. K.

M. S. Kochetkova, M. A. Martyanov, A. K. Poteomkin, and E. A. Khazanov, “Propagation of laser radiation in a medium with thermally induced birefringence and cubic nonlinearity,” Opt. Express 18(12), 12839–12851 (2010).
[CrossRef] [PubMed]

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Raizer, Y. P.

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
[CrossRef] [PubMed]

Rice, D. K.

Savage, C. M.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[CrossRef]

Scott, W. C.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[CrossRef]

Sergeev, A.

Sergeev, A. M.

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Shaikin, A. A.

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Shaykin, A. A.

A. A. Kuzmin, E. A. Khazanov, and A. A. Shaykin, “Large-aperture Nd:glass laser amplifiers with high pulse repetition rate,” Opt. Express 19(15), 14223–14232 (2011).
[CrossRef] [PubMed]

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

Tabor, W. J.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

Taira, T.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[CrossRef]

Vlasov, S. N.

S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
[CrossRef]

Yashin, V. E.

S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
[CrossRef]

Zakharov, V. E.

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).

Zel'dovich, Y. B.

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

W. C. Scott and M. de Wit, “Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser,” Appl. Phys. Lett. 18(1), 3–4 (1971).
[CrossRef]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

IEEE J. Quantum Electron.

E. A. Khazanov, N. F. Andreev, A. N. Mal'shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[CrossRef]

A. K. Poteomkin, E. A. Khazanov, M. A. Martyanov, A. V. Kirsanov, and A. A. Shaykin, “Compact 300 J/ 300 GW frequency doubled neodimium glass laser. Part II: Description of laser setup,” IEEE J. Quantum Electron. 45(7), 854–863 (2009).
[CrossRef]

J. Appl. Phys.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[CrossRef]

J. Opt. Soc. Am.

JETP Lett.

I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, “Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers,” JETP Lett. 81(3), 90–124 (2005).
[CrossRef]

Y. B. Zel'dovich and Y. P. Raizer, “Self-focusing of light. Role of Kerr effect and striction,” JETP Lett. 3, 86–89 (1966).

Opt. Commun.

D. Auric and A. Labadens, “On the use of circulary polarized beam to reduce the self-focusing effect in a glass rod amplifier,” Opt. Commun. 21(2), 241–242 (1977).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(3), 036622-1–036622-16 (2003).

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, and C. M. Savage, “Intensity-dependent changes in the refractive index of liquids,” Phys. Rev. Lett. 12(18), 507–509 (1964).
[CrossRef]

Quantum Electron.

M. A. Kagan and E. A. Khazanov, “Compensation for thermally induced birefringence in polycrystalline ceramic active elements,” Quantum Electron. 33(10), 876–882 (2003).
[CrossRef]

A. K. Potemkin, E. V. Katin, A. V. Kirsanov, G. A. Luchinin, A. N. Mal’shakov, M. A. Mart’yanov, A. Z. Matveev, O. V. Palashov, E. A. Khazanov, and A. A. Shaikin, “Compact neodymium phosphate glass laser emitting 100-J, 100-GW pulses for pumping a parametric amplifier of chirped pulses,” Quantum Electron. 35(4), 302–310 (2005).
[CrossRef]

Sov. J. Quantum Electron.

S. N. Vlasov, V. I. Kryzhanovski?, and V. E. Yashin, “Use of circularly polarized optical beams to suppress selffocusing instability in a nonlinear cubic medium with repeaters,” Sov. J. Quantum Electron. 12(1), 7–10 (1982).
[CrossRef]

L. N. Soms and A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1.Theory,” Sov. J. Quantum Electron. 9(12), 1506–1509 (1979).
[CrossRef]

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “On the problem of depolarization of linearly polarized light by a YAG:Nd3+ laser rod under conditions of thermally induced birefringence,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Sov. Phys. JETP

A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Sov. Phys. JETP 31, 486 (1970).

Sov. Phys. Usp.

E. A. Khazanov and A. M. Sergeev, “Petawatt laser based on optical parametric amplifiers: their state and prospects,” Sov. Phys. Usp. 51(9), 969–974 (2008).
[CrossRef]

A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Sov. Phys. Usp. 54(1), 9–28 (2011).
[CrossRef]

Other

W. Koechner, Solid-state laser engineering (Berlin: Springer, 1999).

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of solid-state lasers (Leningrad: Mashinostroenie, 1986).

K. Sh. Mustaev, V. A. Serebrykov, and V. E. Yashin, JETP Lett. 14, 856–859 (1980).

A. P. Voitovich and V. N. Severikov, Lasers with anisotropic resonators (Minsk: Nauka e technika, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Function Γ(δ) for different values of В-integral and φ = 45° in case of linear polarization.

Fig. 2
Fig. 2

Experimental scheme: 1 – polarizer, 2 – aperture diaphragm Ø0.2 cm, 3 – NE Ø10 cm surrounded by pump lamps, 4 – 90° polarization rotator, 5 – glass wedge, 6 – lens, 7 – pirodetector Gentec QE50, 8 – mirror, 9 – calcite wedge, 10 – CCD camera and filters. Dash line corresponds to depolarized component of radiation.

Fig. 3
Fig. 3

Experimental dependences of δ(t) measured separately in the first and second NE (Fig. 2) for two different series when φ1 = φ2 = 45° (a) and φ1 = 42°, φ2 = 48° (b).

Fig. 4
Fig. 4

Two-dimensional intensity distributions of the radiation component with initial polarization (below) and depolarized component (above) at the output of the scheme in Fig. 2 at В = 0 (a) and В ~ 1 (b).

Fig. 5
Fig. 5

Theoretical and experimental function Γ(t) at the output of the scheme in Fig. 2 at B = 0 and B ~ 1 for two different series when φ1 = φ2 = 45° (a) and φ1 = 42°, φ2 = 48° (b).

Fig. 6
Fig. 6

Theoretical and experimental function Γ(t) at the output of the scheme in Fig. 2 with rotator angle Φ variable in time at B = 0 and B ~ 1 for two different series when φ1 = φ2 = 45° (a) and φ1 = 42°, φ2 = 48° (b).

Fig. 7
Fig. 7

Depolarization Γ(φ = 45°), Γ(φopt) at the output of quarter-wave plate and φopt versus B-integral for linear polarized radiation for rectangular pulse shape (a) and Gaussian pulse (b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B = 2 π λ γ N L 0 L I ( z ) d z ,
Ψ ± = с γ N L 8 π ( E x ± i E y ) ,
{ 2 i d Ψ + d z = k ( | Ψ + | 2 + ( 1 + β ) | Ψ | 2 ) Ψ + + δ ˜ e 2 i φ Ψ 2 i d Ψ d z = k ( | Ψ | 2 + ( 1 + β ) | Ψ + | 2 ) Ψ + δ ˜ e 2 i φ Ψ + ,
Γ = | E o u t E r e f * | 2 | E o u t | 2 | E r e f | 2 .
Γ ( B = 0 ) = sin 2 ( δ 2 ) sin 2 ( 2 φ ) .
A = sin δ q 2 ( c t g δ q 2 i δ l δ q cos 2 Φ δ c δ q i δ l δ q sin 2 Φ δ c δ q i δ l δ q sin 2 Φ c t g δ q 2 + i δ l δ q cos 2 Φ ) ,
δ c = π , δ l = 2 π λ ( n e ( Φ ) n 0 ) L , δ q 2 = δ l 2 + δ c 2 .

Metrics