Abstract

A time reversal optical tomography (TROT) method for near-infrared (NIR) diffuse optical imaging of targets embedded in a highly scattering turbid medium is presented. TROT combines the basic symmetry of time reversal invariance and subspace-based signal processing for retrieval of target location. The efficacy of TROT is tested using simulated data and data obtained from NIR imaging experiments on absorptive and scattering targets embedded in Intralipid-20% suspension in water, as turbid medium. The results demonstrate the potential of TROT for detecting and locating small targets in a turbid medium, such as, breast tumors in early stages of growth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  2. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20(5), 426–428 (1995).
    [CrossRef] [PubMed]
  3. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
    [CrossRef] [PubMed]
  4. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]
  5. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
    [CrossRef] [PubMed]
  6. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
    [CrossRef]
  7. Y. Yao, Y. Wang, Y. Pei, W. Zhu, and R. L. Barbour, “Frequency-domain optical imaging of absorption and scattering distributions by a Born iterative method,” J. Opt. Soc. Am. A 14(1), 325–342 (1997).
    [CrossRef]
  8. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [CrossRef] [PubMed]
  9. N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
    [CrossRef] [PubMed]
  10. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
    [CrossRef] [PubMed]
  11. P. Mohajerani, A. A. Eftekhar, and A. Adibi, “Object localization in the presence of a strong heterogeneous background in fluorescent tomography,” J. Opt. Soc. Am. A 25(6), 1467–1479 (2008).
    [CrossRef] [PubMed]
  12. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
    [CrossRef] [PubMed]
  13. Q. Zhao, L. Ji, and T. Jiang, “Improving depth resolution of diffuse optical tomography with a layer-based sigmoid adjustment method,” Opt. Express 15(7), 4018–4029 (2007).
    [CrossRef] [PubMed]
  14. M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
    [CrossRef]
  15. M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
    [CrossRef]
  16. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
    [CrossRef] [PubMed]
  17. M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
    [CrossRef]
  18. A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
    [CrossRef] [PubMed]
  19. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
    [CrossRef] [PubMed]
  20. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
    [PubMed]
  21. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).
    [CrossRef] [PubMed]
  22. W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
    [CrossRef]
  23. B. Wu, M. Alrubaiee, W. Cai, M. Xu, and S. K. Gayen, “Optical imaging of objects in turbid media using principal component analysis and time reversal matrix methods,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuC10. http://www.opticsinfobase.org/abstract.cfm?uri=COSI-2009-JTuC10
  24. B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
    [CrossRef]
  25. C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
    [CrossRef]
  26. M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self-focusing in inhomogeneous media with time-reversal acoustic mirrors,” in IEEE Ultrasonics Symposium Proceedings (Montreal, Que., Canada, 1989), vol. 2, pp. 681–686.
  27. M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992).
    [CrossRef] [PubMed]
  28. M. Fink, “Time reversal mirrors,” J. Phys. D Appl. Phys. 26(9), 1333–1350 (1993).
    [CrossRef]
  29. C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
    [CrossRef]
  30. A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
    [CrossRef]
  31. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
    [CrossRef]
  32. W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
    [CrossRef]
  33. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
    [CrossRef] [PubMed]
  34. A. J. Devaney, “Super-resolution processing of multi-static data using time reversal and MUSIC” (2000). http://www.ece.neu.edu/faculty/devaney/ajd/preprints.htm .
  35. H. Lev-Ari and A. J. Devaney, “The time reversal techniques re-interpreted: subspace-based signal processing for multi-static target location,” in Proceedings of the 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM '00), (Cambridge, MA, USA, 2000) pp. 509–513.
  36. S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003).
    [CrossRef] [PubMed]
  37. F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
    [CrossRef]
  38. C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
    [CrossRef] [PubMed]
  39. P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).
    [CrossRef]
  40. E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007).
    [CrossRef] [PubMed]
  41. A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68(8), 1045–1050 (1978).
    [CrossRef]
  42. K. Furutsu, “Diffusion equation derived from the space-time transport equation,” J. Opt. Soc. Am. 70(4), 360–366 (1980).
    [CrossRef]
  43. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  44. S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).
  45. A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory (Academic, New York, 1978).
  46. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
    [CrossRef]
  47. S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
    [CrossRef] [PubMed]
  48. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [CrossRef] [PubMed]
  49. M. Lax, V. Nayaramamurti, and R. C. Fulton, “Classical diffusion photon transport in a slab,” in Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, and A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–237.
  50. C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
    [CrossRef]
  51. A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antenn. Propag. 53(5), 1600–1610 (2005).
    [CrossRef]
  52. N. Bourbaki, Topological Vector Spaces (Springer, 1987).
  53. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  54. C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
    [CrossRef]
  55. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).
    [CrossRef] [PubMed]
  56. M. Xu, Y. Pu, and W. Wang, “Clean image synthesis and target numerical marching for optical imaging with backscattering light,” Biomed. Opt. Express 2(4), 850–857 (2011).
    [CrossRef] [PubMed]
  57. T. Nielsen, B. Brendel, R. Ziegler, M. van Beek, F. Uhlemann, C. Bontus, and T. Koehler, “Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid,” Appl. Opt. 48(10), D1–D13 (2009).
    [CrossRef] [PubMed]
  58. Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
    [CrossRef] [PubMed]
  59. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
    [CrossRef] [PubMed]
  60. S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
    [CrossRef]
  61. F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010).
    [CrossRef]

2011 (3)

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

M. Xu, Y. Pu, and W. Wang, “Clean image synthesis and target numerical marching for optical imaging with backscattering light,” Biomed. Opt. Express 2(4), 850–857 (2011).
[CrossRef] [PubMed]

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

2010 (1)

F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010).
[CrossRef]

2009 (3)

T. Nielsen, B. Brendel, R. Ziegler, M. van Beek, F. Uhlemann, C. Bontus, and T. Koehler, “Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid,” Appl. Opt. 48(10), D1–D13 (2009).
[CrossRef] [PubMed]

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

2008 (4)

S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).
[CrossRef] [PubMed]

P. Mohajerani, A. A. Eftekhar, and A. Adibi, “Object localization in the presence of a strong heterogeneous background in fluorescent tomography,” J. Opt. Soc. Am. A 25(6), 1467–1479 (2008).
[CrossRef] [PubMed]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (1)

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

2005 (6)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
[CrossRef]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antenn. Propag. 53(5), 1600–1610 (2005).
[CrossRef]

2004 (3)

S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
[CrossRef]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
[CrossRef]

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

2003 (6)

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[CrossRef] [PubMed]

S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).
[CrossRef] [PubMed]

2000 (2)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (1)

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

1997 (2)

1996 (1)

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

1995 (4)

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20(5), 426–428 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

M. Fink, “Time reversal mirrors,” J. Phys. D Appl. Phys. 26(9), 1333–1350 (1993).
[CrossRef]

1992 (2)

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992).
[CrossRef] [PubMed]

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).
[CrossRef]

1991 (2)

C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

1989 (1)

1980 (1)

1978 (1)

Adibi, A.

Aguirre, A.

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

Akal, T.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Alfano, R. R.

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

Alrubaiee, M.

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

Anastasiadou, M.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Andraud, C.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Ardeshirpour, Y.

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Barbour, R. L.

Bick, U.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Biswal, N.

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

Boas, D. A.

Bontus, C.

Bordier, C.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Brendel, B.

Brito, M.

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

Brooksby, B. A.

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Brukilacchio, T. J.

Cai, W.

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

Cassereau, D.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Chance, B.

Charron, E.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Chaves, T.

Chen, N. G.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Chorlton, M.

Davis, S. C.

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Dehghani, H.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Derode, A.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Devaney, A. J.

A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
[CrossRef]

A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antenn. Propag. 53(5), 1600–1610 (2005).
[CrossRef]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
[CrossRef]

S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003).
[CrossRef] [PubMed]

Diekmann, F.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Eftekhar, A. A.

Eppstein, M. J.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Feng, T.-C.

Ferla, C.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Fink, M.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[CrossRef]

M. Fink, “Time reversal mirrors,” J. Phys. D Appl. Phys. 26(9), 1333–1350 (1993).
[CrossRef]

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992).
[CrossRef] [PubMed]

C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[CrossRef]

Freund, T.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Furutsu, K.

Gayen, S. K.

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Godavarty, A.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Gruber, F. K.

F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010).
[CrossRef]

E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007).
[CrossRef] [PubMed]

A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
[CrossRef]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
[CrossRef]

Gurfinkel, M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Hamm, B.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Hansen, P. C.

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).
[CrossRef]

Haskell, R. C.

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Hedge, P.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Hodgkiss, W. S.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Hou, S.

S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
[CrossRef]

Huang, M.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Ishimaru, A.

Jackson, D. R.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Jagjivan, B.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Ji, L.

Jiang, H.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

Jiang, T.

Kane, M.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Kepshire, D. S.

Kilmer, M. E.

Koehler, T.

Konecky, S. D.

Kopans, D. B.

Kroman, N.

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

Kuperman, W. A.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Kurtzman, S. H.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Lafait, J.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Lax, M.

Lee, K.

Lehman, S. K.

S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003).
[CrossRef] [PubMed]

Lerosey, G.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Li, A.

Manneville, S.

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

Marengo, E.

F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010).
[CrossRef]

Marengo, E. A.

E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007).
[CrossRef] [PubMed]

A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
[CrossRef]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
[CrossRef]

Markel, V.

Martin, J. C.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Martino, A.

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

McAdams, M. S.

Melbye, M.

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

Miller, E. L.

Moes, C. J. M.

Mohajerani, P.

Moore, R. H.

Mouridsen, H. T.

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

Nielsen, T.

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

O’Leary, M. A.

Panasyuk, G. Y.

Patterson, M. S.

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

Pei, Y.

Poellinger, A.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Pogue, B. W.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

Ponder, S. L.

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Prada, C.

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[CrossRef] [PubMed]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[CrossRef]

C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[CrossRef]

Prahl, S. A.

Pu, Y.

Roux, P.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Roy, R.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Schotland, J. C.

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Simonetti, F.

E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007).
[CrossRef] [PubMed]

Solna, K.

S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
[CrossRef]

Song, H. C.

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

Spoliansky, D.

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

Stott, J.

Svaasand, L. O.

Tanter, M.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Thomas, J. L.

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[CrossRef] [PubMed]

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Thomas, L.

C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[CrossRef]

Thompson, A. B.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.-T.

Uhlemann, F.

van Beek, M.

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wang, W.

Wang, Y.

Wilson, B. C.

Wohlfahrt, J.

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

Wu, B.

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

Wu, F.

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[CrossRef]

Wu, T.

Xu, M.

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

M. Xu, Y. Pu, and W. Wang, “Clean image synthesis and target numerical marching for optical imaging with backscattering light,” Biomed. Opt. Express 2(4), 850–857 (2011).
[CrossRef] [PubMed]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

Yao, Y.

Yodh, A. G.

Zarfos, K.

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Zevallos, M.

Zhang, C.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Zhang, Q.

Zhao, H.

S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
[CrossRef]

Zhao, Q.

Zhu, Q.

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Zhu, W.

Ziegler, R.

Acad. Radiol. (1)

A. Poellinger, J. C. Martin, S. L. Ponder, T. Freund, B. Hamm, U. Bick, and F. Diekmann, “Near-infrared laser computed tomography of the breast first clinical experience,” Acad. Radiol. 15(12), 1545–1553 (2008).
[CrossRef] [PubMed]

Appl. Opt. (8)

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42(25), 5181–5190 (2003).
[CrossRef] [PubMed]

W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Three-dimensional localization and optical imaging of objects in turbid media with independent component analysis,” Appl. Opt. 44(10), 1889–1897 (2005).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part I: Analytical forms,” Appl. Opt. 34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

T. Nielsen, B. Brendel, R. Ziegler, M. van Beek, F. Uhlemann, C. Bontus, and T. Koehler, “Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid,” Appl. Opt. 48(10), D1–D13 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Alrubaiee, M. Xu, S. K. Gayen, M. Brito, and R. R. Alfano, “Three-dimensional optical tomographic imaging of scattering objects in tissue-simulating turbid medium using independent component analysis,” Appl. Phys. Lett. 87(19), 191112 (2005).
[CrossRef]

M. Alrubaiee, M. Xu, S. K. Gayen, and R. R. Alfano, “Localization and cross section reconstruction of fluorescent targets in ex vivo breast tissue using independent component analysis,” Appl. Phys. Lett. 89(13), 133902 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

C. Bordier, C. Andraud, E. Charron, J. Lafait, M. Anastasiadou, and A. Martino, “Illustration of a bimodal system in Intralipid 20% by polarized light scattering: experiments and modelling,” Appl. Phys., A Mater. Sci. Process. 94(2), 347–355 (2009).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

M. Xu, M. Alrubaiee, S. K. Gayen, and R. R. Alfano, “Optical diffuse imaging of an ex vivo model cancerous human breast using independent component analysis,” IEEE J. Sel. Top. Quantum Electron. 14(1), 43–49 (2008).
[CrossRef]

B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron. 9(2), 199–209 (2003).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

A. J. Devaney, “Time reversal imaging of obscured targets from multistatic data,” IEEE Trans. Antenn. Propag. 53(5), 1600–1610 (2005).
[CrossRef]

IEEE Trans. Image Process. (1)

E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16(8), 1967–1984 (2007).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Fink, “Time reversal of ultrasonic fields. I. Basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(5), 555–566 (1992).
[CrossRef] [PubMed]

Int. J. Cancer (1)

N. Kroman, J. Wohlfahrt, H. T. Mouridsen, and M. Melbye, “Influence of tumor location on breast cancer prognosis,” Int. J. Cancer 105(4), 542–545 (2003).
[CrossRef] [PubMed]

Inverse Probl. (2)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).
[CrossRef]

J. Acoust. Soc. Am. (8)

S. K. Lehman and A. J. Devaney, “Transmission mode time-reversal super-resolution imaging,” J. Acoust. Soc. Am. 113(5), 2742–2753 (2003).
[CrossRef] [PubMed]

F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115(6), 3042–3047 (2004).
[CrossRef]

C. Prada and J. L. Thomas, “Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix,” J. Acoust. Soc. Am. 114(1), 235–243 (2003).
[CrossRef] [PubMed]

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “Decomposition of the time reversal operator: detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 2067–2076 (1996).
[CrossRef]

C. Prada, F. Wu, and M. Fink, “The iterative time reversal mirror: a solution to self-focusing in the pulse echo mode,” J. Acoust. Soc. Am. 90(2), 1119–1129 (1991).
[CrossRef]

C. Prada, L. Thomas, and M. Fink, “The iterative time reversal process: analysis of the convergence,” J. Acoust. Soc. Am. 97(1), 62–71 (1995).
[CrossRef]

A. J. Devaney, E. A. Marengo, and F. K. Gruber, “Time-reversal-based imaging and inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 118(5), 3129–3138 (2005).
[CrossRef]

W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase conjugation in the ocean: experimental demonstration of an acoustic time reversal mirror,” J. Acoust. Soc. Am. 103(1), 25–40 (1998).
[CrossRef]

J. Biomed. Opt. (2)

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9(3), 488–496 (2004).
[CrossRef] [PubMed]

Y. Ardeshirpour, N. Biswal, A. Aguirre, and Q. Zhu, “Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents,” J. Biomed. Opt. 16(4), 046015 (2011).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

S. Hou, K. Solna, and H. Zhao, “Imaging of location and geometry for extended targets using the response matrix,” J. Comput. Phys. 199(1), 317–338 (2004).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Phys. D Appl. Phys. (1)

M. Fink, “Time reversal mirrors,” J. Phys. D Appl. Phys. 26(9), 1333–1350 (1993).
[CrossRef]

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Neoplasia (1)

Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hedge, and S. H. Kurtzman, “Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases,” Neoplasia 5(5), 379–388 (2003).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (3)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40(10), 1709–1729 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U.S.A. 97(6), 2767–2772 (2000).
[CrossRef] [PubMed]

Proc. SPIE (2)

W. Cai, M. Alrubaiee, S. K. Gayen, M. Xu, and R. R. Alfano, “Three-dimensional optical tomography of objects in turbid media using the round-trip matrix,” Proc. SPIE 5693, 4–9 (2005).
[CrossRef]

B. Wu, W. Cai, M. Alrubaiee, M. Xu, and S. K. Gayen, “Three dimensional time reversal optical tomography,” Proc. SPIE 7892, 78920G (2011).
[CrossRef]

Rep. Prog. Phys. (1)

M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, “Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 1933–1995 (2000).
[CrossRef]

Science (1)

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315(5815), 1120–1122 (2007).
[CrossRef] [PubMed]

SIAM J. Imaging Sci. (1)

F. K. Gruber and E. Marengo, “Reinterpretation and enhancement of signal-subspace-based imaging methods for extended scatterers,” SIAM J. Imaging Sci. 3(3), 434–461 (2010).
[CrossRef]

SIAM Rev. (1)

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Rev. 34(4), 561–580 (1992).
[CrossRef]

Other (8)

S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory (Academic, New York, 1978).

M. Lax, V. Nayaramamurti, and R. C. Fulton, “Classical diffusion photon transport in a slab,” in Laser Optics of Condensed Matter, J. L. Birman, H. Z. Cummins, and A. A. Kaplyanskii, eds. (Plenum, New York, 1987), pp. 229–237.

N. Bourbaki, Topological Vector Spaces (Springer, 1987).

A. J. Devaney, “Super-resolution processing of multi-static data using time reversal and MUSIC” (2000). http://www.ece.neu.edu/faculty/devaney/ajd/preprints.htm .

H. Lev-Ari and A. J. Devaney, “The time reversal techniques re-interpreted: subspace-based signal processing for multi-static target location,” in Proceedings of the 1st IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM '00), (Cambridge, MA, USA, 2000) pp. 509–513.

B. Wu, M. Alrubaiee, W. Cai, M. Xu, and S. K. Gayen, “Optical imaging of objects in turbid media using principal component analysis and time reversal matrix methods,” in Computational Optical Sensing and Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuC10. http://www.opticsinfobase.org/abstract.cfm?uri=COSI-2009-JTuC10

M. Fink, C. Prada, F. Wu, and D. Cassereau, “Self-focusing in inhomogeneous media with time-reversal acoustic mirrors,” in IEEE Ultrasonics Symposium Proceedings (Montreal, Que., Canada, 1989), vol. 2, pp. 681–686.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A plot of first twenty (20) eigenvalues on logarithmic scale. (b) 2-D slice of the pseudo spectrum on z = 21 mm plane showing the location of the three difficult targets described in the text. Similar 2-D slices were also obtained for z = 9-mm, 15-mm, and 31-mm planes (not shown).

Fig. 2
Fig. 2

A schematic diagram of the experimental arrangement for imaging objects embedded in a turbid medium. (Key: CCD = charge coupled device, PC = personal computer) Inset (below) shows the 2-D array in the input plane that was scanned across the incident laser beam, and inset (right) shows a typical raw image.

Fig. 3
Fig. 3

A semi-log plot of eigenvalue spectrum with first 40 leading eigenvalues for the target at z = 30 mm.

Fig. 4
Fig. 4

Pseudo image of the target (left pane) and corresponding spatial intensity profiles (right pane) when the target is located at z = 30 mm: (a) experimental data; (b) simulation without any added noise; and (c) simulation with 20% Gaussian noise added. The pseudo values are calculated using Eq. (20).

Fig. 5
Fig. 5

(a) (Experiment): TROT generated cross-section pseudo image when the targets are separated by 27.6 mm is shown in the left pane and pseudo-value profiles through the right target along x, y and z directions are shown in the right pane. (b) (Experiment): TROT generated cross-section pseudo image when the targets are separated by 12.6 mm is shown in the left pane and the corresponding spatial profiles through the right target along x, y and z directions are shown in the right pane. (c) (Simulation): TROT generated cross-section pseudo image when two targets are separated by 12.6 mm is shown in the left pane and the corresponding pseudo-value profiles are plot in the right pane. In simulation 10% Gaussian noise is added for comparison with the experimental results. P is pseudo value calculated using Eq. (20).

Fig. 6
Fig. 6

Pseudo image of the target (left pane) and corresponding spatial intensity profiles (right pane) when the target is located at z = 30 mm: (a) experimental data; (b) simulation with 20% Gaussian noise added. P is pseudo value calculated using Eq. (20).

Tables (5)

Tables Icon

Table 1 Eigenvalues, pseudo spectrum and the corresponding positions

Tables Icon

Table 2 Pseudo values associated with absorptive and scattering components at the peak position

Tables Icon

Table 3 Positions of one target located at different depths

Tables Icon

Table 4 Positions of two targets separated with different distances

Tables Icon

Table 5 Positions of one scattering target located at different depths

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Δϕ( r d , r s )= G( r d ,r)δ μ a (r)cG( r, r s ) d 3 r δD(r)c r G( r d ,r) r G( r, r s ) d 3 r,
K ij = m=1 M G d ( r i , X m ) τ m G s ( X m , r j ),i=1,2,, N d ;j=1,2,, N s ,
K ij = m=1 M G d ( X m , r i ) τ m G s ( X m , r j ),
K={ K ij }= m=1 M g d ( X m ) τ m g s T ( X m ),
g s ( r )= [ G s ( r 1 ,r ), G s ( r 2 ,r ),, G s ( r N s ,r )] T ,
g d ( r )= [ G d ( r 1 ,r ), G d ( r 2 ,r ),, G d ( r N d ,r )] T ,
K ij = l=1 L τ l r G d ( r i , X l ) r G s ( X l , r j ) = l=1 L τ l α={ x,y,z } α G d ( r i , X l ) α G s ( X l , r j ),
K= l=1 L α={ x,y,z } α g d ( X l ) τ l α g s T ( X l ).
G( r,r' )=G( r',r )= 1 4πD k= ( e κ r k + r k + e κ r k r k ),
r k ± = [ (xx') 2 + (yy') 2 + (zz'+2kd) 2 ] 1/2 ,
H d ( r,X )= i=1 N d G d ( r, r i ) G d * ( r i ,X )= g d T ( r ) g d * ( X ) = g d ( X ) g d ( r )= g d ( X ), g d ( r ) ,
H s ( r,X )= g s ( X ) g s ( r )= g s ( X ), g s ( r ) .
H d ( X m , X m' )0
T SDDS = m=1 M | τ m | 2 g d ( X m ) 2 g s * ( X m ) g s T ( X m ),
T SDDS g s * ( X m )= | τ m | 2 g d ( X m ) 2 g s ( X m ) 2 g s * ( X m ).
v j = g s * ( X j ) g s ( X j ) ,
u j = g d * ( X j ) g d ( X j ) ,
ψ j s = v j * , g s ( X p ) = v j T g s ( X p )= g s ( X j ) g s ( X j ) g s ( X p ) = 1 g s ( X j ) H s ( X p , X j ),
ψ j d = u j * , g d ( X p ) = u j T g d ( X p )= g d ( X j ) g d ( X j ) g d ( X p ) = 1 g d ( X j ) H d ( X p , X j ),
ψ j = ψ j d ψ j s = 1 g s ( X j ) g d ( X j ) H d ( X p , X j ) H s * ( X j , X p ),
v j * , g s ( X m ) = v j T g s ( X m )0,j=M+1,, N s ,
u j * , g d ( X m ) = u j T g d ( X m )0,j=M+1,, N d .
Q s ( X p )= j=M+1 N s | v j T g s ( X p ) | 2 ,
Q d ( X p )= j=M+1 N d | u j T g d ( X p ) | 2 .
P s ( X p )= g s ( X p ) 2 / | Q s ( X p ) |
P d ( X p )= g d ( X p ) 2 / | Q d ( X p ) |
P( X p )= P s ( X p ) P d ( X p )
Q s ( X p )= g s ( X p ) 2 j=1 M | v j T g s ( X p ) | 2 ,
Q d ( X p )= g d ( X p ) 2 j=1 M | u j T g d ( X p ) | 2 .
P s ( X p )= g s ( X p ) 2 / | Q s ( X p ) λ j ϵ | ,

Metrics