Abstract

A calibrator utilizing a low-coherent light source straightness interferometer and a compensation method is introduced for straightness measurements in this paper. Where the interference pattern, which is modulated by an envelope function, generated by the interferometer undergoes a shifting as the Wolaston prism of the interferometer experiences a lateral displacement, and the compensation method senses the displacement by driving the prism back to the position to restore the pattern. A setup, which is with a measurement sensitivity of 36.6° /μm, constructed for realizing the calibrator is demonstrated. The experimental results from the uses of the setup reveal that the setup is with a measurement resolution and stability of 0.019 and 0.08μm, respectively, validate the calibrator, and confirm the calibrator’s applicability of straightness measurements and advantage of extensible working distance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ISO 230–1: 1996(E), Test code for machine tools-Part 1: Geometric accuracy of machines operating under no-load or finishing condition.
  2. G. J. Schuetz, “The electronic level-device of many uses,” http://www.deterco.com/tech_info/MAHR%20Technical%20Paper/Level%20System%20Articles/Levels%20Applications.pdf .
  3. Talyor Hobson, Talyvel/clinometers for angular measurement, http://www.zimmerman.com.tw/uploads/TalyvelEnglish.pdf .
  4. Wyler electronic levels: http://www.fvfowler.com/pdf/446.pdf .
  5. F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum. 54(12), 1648–1652 (1983).
    [CrossRef]
  6. Davison Optronics, Principles of autocollimation: http://www.davidsonoptronics.com/poa.htm .
  7. Talyor Hobson, Autocollimators and accessories range, Measuring angle, straightness, flatness, squareness, parallelism: http://www.zimmerman.com.tw/uploads/Autocollimators2006.pdf .
  8. Raytech systems, GEPARDTM, Laser geometrical measuring and alignment system: http://www.cullam.com.tw/download/ray/RAYTEC%20GEPARD%20MANUAL.pdf .
  9. J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).
  10. C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
    [CrossRef]
  11. 2-D optical position sensor: http://www.aculux.com/pdf/Aculux%202-D%20Optical%20Position%20Sensor%20product%20sheet.pdf .
  12. C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).
  13. Agilent 5530 Dynamic Calibrator: http://www.cullam.com.tw/download/5530/5530_catalog.pdf .
  14. Renishaw XL-80 laser measurement system: http://www.mdcalibrations.com/images/XL80%20Brochure%20-%20L-9908-0375-02.pdf .
  15. S. T. Lin, “A laser interferometer for measuring straightness,” Opt. Laser Technol. 33(3), 195–199 (2001).
    [CrossRef]
  16. C. M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Appl. Opt. 43(19), 3812–3816 (2004).
    [CrossRef] [PubMed]
  17. B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
    [CrossRef] [PubMed]
  18. H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
    [CrossRef]
  19. T. Kume, K. Enami, Y. Higashi, and K. Ueno, “Evaluation of error propagation in profilometry using stitching,” 9th International Workshop on Accelerator Alignment, Sep. 26–29, 2006.
  20. A. Yariv and P. Yeh, Optical Wave in Crystals (John Wiley & Sons, Inc., 1984), Chap. 4.
  21. K. J. Gasvik, Optical Metrology (John Wiley & Sons, Inc., 2002), Chaps. 3 and 10.
  22. D. Malacara, Optical Shop Testing (John Wiley & Sons, Inc., 1978), Chap. 3.

2009 (2)

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

2005 (1)

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

2004 (1)

2001 (1)

S. T. Lin, “A laser interferometer for measuring straightness,” Opt. Laser Technol. 33(3), 195–199 (2001).
[CrossRef]

1997 (1)

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
[CrossRef]

1992 (1)

J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).

1983 (1)

F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum. 54(12), 1648–1652 (1983).
[CrossRef]

Chen, B.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Deng, S. Y.

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

Feng, Q.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Hsu, C. C.

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

Hsu, T. H.

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

Huang, P. S.

J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).

Jeng, Y. R.

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

Jywe, W. Y.

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

Li, C.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Lin, S. T.

S. T. Lin, “A laser interferometer for measuring straightness,” Opt. Laser Technol. 33(3), 195–199 (2001).
[CrossRef]

Liu, C. H.

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

Ni, J.

J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).

Pahk, H. J.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
[CrossRef]

Park, J. S.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
[CrossRef]

Schuda, F. J.

F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum. 54(12), 1648–1652 (1983).
[CrossRef]

Tang, W.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Wu, C. M.

Wu, S. M.

J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).

Yan, L.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Yeo, I.

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
[CrossRef]

Zhang, E.

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Int. J. Mach. Tools Manuf. (1)

H. J. Pahk, J. S. Park, and I. Yeo, “Development of straightness measurement technique using the profile matching method,” Int. J. Mach. Tools Manuf. 37(2), 135–147 (1997).
[CrossRef]

J. Eng. Ind. (1)

J. Ni, P. S. Huang, and S. M. Wu, ““A multi-degree-of-freedom measuring system for CMM geometric error,” Trans. ASME,” J. Eng. Ind. 114, 362–369 (1992).

Opt. Laser Technol. (1)

S. T. Lin, “A laser interferometer for measuring straightness,” Opt. Laser Technol. 33(3), 195–199 (2001).
[CrossRef]

Proc. IMechE, 223, J. Engineering Manufacture (1)

C. H. Liu, Y. R. Jeng, W. Y. Jywe, S. Y. Deng, and T. H. Hsu, “Automatic straightness measurement of a linear guide using a real-time straightness self-compensating scanning stage,” Proc. IMechE, 223, J. Engineering Manufacture, 1171–1179 (2009).

Rev. Sci. Instrum. (3)

C. H. Liu, W. Y. Jywe, C. C. Hsu, and T. H. Hsu, “Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for a linear stage,” Rev. Sci. Instrum. 76(5), 55110 (2005).
[CrossRef]

F. J. Schuda, “High-precision, wide-range, dual-axis, angle monitoring system,” Rev. Sci. Instrum. 54(12), 1648–1652 (1983).
[CrossRef]

B. Chen, E. Zhang, L. Yan, C. Li, W. Tang, and Q. Feng, “A laser interferometer for measuring straightness and its position based on heterodyne interferometry,” Rev. Sci. Instrum. 80(11), 115113 (2009).
[CrossRef] [PubMed]

Other (14)

Davison Optronics, Principles of autocollimation: http://www.davidsonoptronics.com/poa.htm .

Talyor Hobson, Autocollimators and accessories range, Measuring angle, straightness, flatness, squareness, parallelism: http://www.zimmerman.com.tw/uploads/Autocollimators2006.pdf .

Raytech systems, GEPARDTM, Laser geometrical measuring and alignment system: http://www.cullam.com.tw/download/ray/RAYTEC%20GEPARD%20MANUAL.pdf .

ISO 230–1: 1996(E), Test code for machine tools-Part 1: Geometric accuracy of machines operating under no-load or finishing condition.

G. J. Schuetz, “The electronic level-device of many uses,” http://www.deterco.com/tech_info/MAHR%20Technical%20Paper/Level%20System%20Articles/Levels%20Applications.pdf .

Talyor Hobson, Talyvel/clinometers for angular measurement, http://www.zimmerman.com.tw/uploads/TalyvelEnglish.pdf .

Wyler electronic levels: http://www.fvfowler.com/pdf/446.pdf .

2-D optical position sensor: http://www.aculux.com/pdf/Aculux%202-D%20Optical%20Position%20Sensor%20product%20sheet.pdf .

Agilent 5530 Dynamic Calibrator: http://www.cullam.com.tw/download/5530/5530_catalog.pdf .

Renishaw XL-80 laser measurement system: http://www.mdcalibrations.com/images/XL80%20Brochure%20-%20L-9908-0375-02.pdf .

T. Kume, K. Enami, Y. Higashi, and K. Ueno, “Evaluation of error propagation in profilometry using stitching,” 9th International Workshop on Accelerator Alignment, Sep. 26–29, 2006.

A. Yariv and P. Yeh, Optical Wave in Crystals (John Wiley & Sons, Inc., 1984), Chap. 4.

K. J. Gasvik, Optical Metrology (John Wiley & Sons, Inc., 2002), Chaps. 3 and 10.

D. Malacara, Optical Shop Testing (John Wiley & Sons, Inc., 1978), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic diagram of the low-coherent light source straightness interferometer; (b) diagram showing the Wollaston prism moving along the z-axis.

Fig. 2
Fig. 2

The points P, Q, and R on the interference pattern. The black and white regions represent dark and bright fringes, respectively; the grids indicate the pixels around P, Q, and R.

Fig. 3
Fig. 3

Diagram for demonstrating the way of extending the working distance.

Fig. 4
Fig. 4

The experimental setup of the calibrator.

Fig. 5
Fig. 5

The correlogram of the point Q.

Fig. 6
Fig. 6

The S-curve.

Fig. 7
Fig. 7

The experimental result of the stability test.

Fig. 8
Fig. 8

The experimental result of the validity test.

Fig. 9
Fig. 9

The experimental result of the applicability test.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E em = M A M eff M P E in .
E em =[ V x V y ],
E in =[ V o V o ],
M P = M A = 1 2 [ 1 1 1 1 ],
M eff =[ e iδ/2 0 0 e iδ/2 ].
I= V 0 2 [1+cosδ]
I= V 0 2 [1+γcosδ].
δ= δ 1 + δ 2 + δ 3 .
δ 1 = 8π λ c θx;
S= I R I P I R + I P ,

Metrics