Abstract

Hemispherical total reflectivity of copper, nickel, and tungsten in ablation by nanosecond Nd:YAG laser pulses in air of atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1–100 J/cm2. Our experiment shows that at laser fluences below the plasma formation threshold the reflectivity of mechanically polished metals remains virtually equal to the table room-temperature reflectivity values. The hemispherical total reflectivity of the studied metals begins to drop at a laser fluence of the plasma formation threshold. With increasing laser fluence above the plasma formation threshold the reflectivity sharply decreases to a low value and then remains unchanged with further increasing laser fluence. Computation of the surface temperature at the plasma formation threshold fluence reveals that its value is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on a real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).
  2. D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).
  3. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
    [CrossRef]
  4. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).
  5. R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
    [CrossRef]
  6. Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
    [CrossRef]
  7. V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
    [CrossRef]
  8. V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).
    [CrossRef] [PubMed]
  9. S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
    [CrossRef]
  10. S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
    [CrossRef]
  11. S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
    [CrossRef] [PubMed]
  12. A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
    [CrossRef]
  13. N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
    [CrossRef]
  14. A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).
  15. D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
    [CrossRef]
  16. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
    [CrossRef] [PubMed]
  17. A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
    [CrossRef]
  18. J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
    [CrossRef]
  19. A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
    [CrossRef] [PubMed]
  20. A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).
  21. N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).
  22. J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
    [CrossRef]
  23. T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
    [CrossRef]
  24. Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).
  25. A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
    [CrossRef]
  26. A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
    [CrossRef]
  27. A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
    [CrossRef]
  28. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).
  29. B. T. Barnes, “Optical constants of incandescent refractory metals,” J. Opt. Soc. Am. 56(11), 1546–1550 (1966).
    [CrossRef]
  30. J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).
  31. S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).
  32. S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
    [CrossRef]
  33. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
    [CrossRef]
  34. A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
    [CrossRef]
  35. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
    [CrossRef]
  36. S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
    [CrossRef]
  37. L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).
  38. S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
    [CrossRef]
  39. N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
    [CrossRef]
  40. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
    [CrossRef] [PubMed]
  41. A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
    [CrossRef] [PubMed]
  42. J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
    [CrossRef]
  43. S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
    [CrossRef]
  44. A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
    [CrossRef]
  45. N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
    [CrossRef]
  46. N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).
  47. Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
    [CrossRef]
  48. D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
    [CrossRef]
  49. T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
    [CrossRef] [PubMed]
  50. M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
    [CrossRef]

2011 (5)

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

2010 (2)

S. T. Hendow and S. A. Shakir, “Structuring materials with nanosecond laser pulses,” Opt. Express 18(10), 10188–10199 (2010).
[CrossRef] [PubMed]

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

2009 (3)

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

2008 (5)

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[CrossRef]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

V. Zorba, N. Boukos, I. Zergioti, and C. Fotakis, “Ultraviolet femtosecond, picosecond and nanosecond laser microstructuring of silicon: structural and optical properties,” Appl. Opt. 47(11), 1846–1850 (2008).
[CrossRef] [PubMed]

2007 (2)

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

2006 (3)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[CrossRef]

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

2005 (3)

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[CrossRef] [PubMed]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[CrossRef]

2004 (2)

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

2003 (2)

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

2002 (1)

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

2001 (1)

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

1999 (2)

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[CrossRef]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[CrossRef]

1997 (1)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[CrossRef]

1996 (1)

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

1995 (1)

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[CrossRef]

1994 (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[CrossRef] [PubMed]

1990 (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[CrossRef] [PubMed]

1985 (2)

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[CrossRef]

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[CrossRef]

1977 (2)

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

1976 (1)

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[CrossRef]

1975 (1)

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[CrossRef]

1969 (1)

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

1968 (1)

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

1966 (1)

Abdolvand, A.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Aghaei, M.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[CrossRef]

Amoruso, S.

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[CrossRef]

Babich, L. P.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

Barnes, B. T.

Basov, N. G.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Ben-Yakar, A.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Bhandarkar, U. V.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

Bogaerts, A.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[CrossRef]

Boiko, V. A.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Bonch-Bruevich, A. M.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Boukos, N.

Bourham, M. A.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

Bulgakov, A. V.

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[CrossRef]

Bulgakova, N. M.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[CrossRef]

Camacho-Lopez, M. A.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

Camacho-Lopez, S.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

Chen, Z.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[CrossRef]

Chinni, R. C.

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[CrossRef]

Chong, T. C.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Cremers, D. A.

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[CrossRef]

Dahotre, N. B.

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[CrossRef] [PubMed]

Dai, J.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Delaporte, P.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

Dolgaev, S. I.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Duscher, G.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

Dymshits, Yu. I.

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

Escobar-Alarcon, L.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

Evans, R.

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

Eversole, D.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Fernandez-Pradas, J. M.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Fotakis, C.

Fowlkes, J. D.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Geohegan, D. B.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[CrossRef]

Greif, R.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

Grigoropoulos, C. P.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[CrossRef]

Guan, Y.-F.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Guo, C.

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Haverkamp, J.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

Hendow, S. T.

Hermann, J.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

Ho, J. R.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[CrossRef]

Hong, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Hong, M. H.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Huang, S. M.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Humphrey, J. A. C.

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[CrossRef]

Imas, Y. A.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

In’tveld, B. H.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Itina, T. E.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

Jellison, G. E.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

Jin, C.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

Joshi, S. S.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

Kelly, R.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[CrossRef] [PubMed]

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[CrossRef]

Kohns, P.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Kokody, N. G.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Kovalenko, V.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Krishnan, S.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[CrossRef]

Krokhin, O. N.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Kurella, A.

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[CrossRef] [PubMed]

Kuzmichev, V. M.

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

Li, L.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Libenson, M. N.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Liu, Z.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Lloyd, R. W.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Luk’yanchuk, B.

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

Luk’yanchuk, B. S.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Mal’tsev, L. N.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Malshe, A.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Mao, X.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

Marla, D.

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

Mayo, R. M.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

McGibbon, M. M.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

Mehrabian, S.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[CrossRef]

Miotello, A.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[CrossRef] [PubMed]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Morenza, J. L.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Narayan, J.

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[CrossRef] [PubMed]

Nordine, P. C.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[CrossRef]

Notis, M.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[CrossRef]

Panchenko, A. N.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

Pedraza, A. J.

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

Peterlongo, A.

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[CrossRef] [PubMed]

Pudkov, S. D.

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

Puretzky, A. A.

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

Ready, J. F.

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[CrossRef]

Romanov, G. S.

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

Rothenberg, J. E.

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[CrossRef]

Russo, R. E.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

Saifi, M. A.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[CrossRef]

Schmidt, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Schmidt, M. J. J.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Semenov, O. G.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Sentis, M.

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

Serra, P.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Shafeev, G. A.

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Shakir, S. A.

Shi, L. P.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Shulepov, M. A.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

Singh, R. K.

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[CrossRef] [PubMed]

Sklizkov, G. V.

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Tan, S. J.

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[CrossRef]

Tavassoli, S. H.

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[CrossRef]

Tel’minov, A. E.

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

Tokarev, V. N.

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[CrossRef]

Vorob’ev, A. Ya.

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Wang, Q. F.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Wang, Z. B.

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

Wen, S.-B.

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

Whitehead, D. J.

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

Yugawa, K. J.

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[CrossRef]

Zavecz, T. E.

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[CrossRef]

Zergioti, I.

Zhong, M.

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Zhukov, V. P.

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

Zorba, V.

Anal. Bioanal. Chem. (1)

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. E. Zavecz, M. A. Saifi, and M. Notis, “Metal reflectivity under high-intensity optical radiation,” Appl. Phys. Lett. 26(4), 165–168 (1975).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (11)

A. Y. Vorobyev, V. M. Kuzmichev, N. G. Kokody, P. Kohns, J. Dai, and C. Guo, “Residual thermal effects in Al following single ns- and fs-laser pulse ablation,” Appl. Phys., A Mater. Sci. Process. 82(2), 357–362 (2006).
[CrossRef]

A. Abdolvand, R. W. Lloyd, M. J. J. Schmidt, D. J. Whitehead, Z. Liu, and L. Li, “Formation of highly organized, periodic microstructures on steel surfaces upon pulsed laser irradiation,” Appl. Phys., A Mater. Sci. Process. 95(2), 447–452 (2009).
[CrossRef]

N. M. Bulgakova, A. N. Panchenko, A. E. Tel’minov, and M. A. Shulepov, “Formation of microtower structures in nanosecond laser ablation of liquid metals,” Appl. Phys., A Mater. Sci. Process. 98(2), 393–400 (2010).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and Y.-F. Guan, “Surface nanostructuring of silicon,” Appl. Phys., A Mater. Sci. Process. 77(2), 277–284 (2003).

D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys., A Mater. Sci. Process. 89(2), 283–291 (2007).
[CrossRef]

N. M. Bulgakova, V. P. Zhukov, A. Y. Vorobyev, and C. Guo, “Modeling of residual thermal effect in femtosecond laser ablation of metals. Role of gas environment,” Appl. Phys., A Mater. Sci. Process. 92(4), 883–889 (2008).
[CrossRef]

N. M. Bulgakova and A. V. Bulgakov; “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys., A Mater. Sci. Process. 73(2), 199–208 (2001).
[CrossRef]

N. M. Bulgakova, A. V. Bulgakov, and L. P. Babich, “Energy balance of pulsed laser ablation: thermal model revised,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1323–1326 (2004).

S. Amoruso, “Modeling of UV pulsed-laser ablation of metallic targets,” Appl. Phys., A Mater. Sci. Process. 69(3), 323–332 (1999).
[CrossRef]

Z. B. Wang, M. H. Hong, B. S. Luk’yanchuk, S. M. Huang, Q. F. Wang, L. P. Shi, and T. C. Chong, “Parallel nanostructuring of GeSbTe film with particle mask,” Appl. Phys., A Mater. Sci. Process. 79(4–6), 1603–1606 (2004).
[CrossRef]

S. I. Dolgaev, J. M. Fernandez-Pradas, J. L. Morenza, P. Serra, and G. A. Shafeev, “Growth of large microcones in steel under multipulsed Nd:YAG laser irradiation,” Appl. Phys., A Mater. Sci. Process. 83(3), 417–420 (2006).
[CrossRef]

Appl. Spectrosc. Rev. (1)

D. A. Cremers and R. C. Chinni, “Laser-induced spectroscopy—capabilities and limitations,” Appl. Spectrosc. Rev. 44(6), 457–506 (2009).
[CrossRef]

Appl. Surf. Sci. (2)

A. A. Puretzky, D. B. Geohegan, G. E. Jellison, and M. M. McGibbon, “Comparative diagnostics of ArF- and KrF-laser generated carbon plumes used for amorphous diamond-like carbon film deposition,” Appl. Surf. Sci. 96–98, 859–865 (1996).
[CrossRef]

S. Camacho-Lopez, R. Evans, L. Escobar-Alarcon, M. A. Camacho-Lopez, and M. A. Camacho-Lopez, “Polarization-dependent single-beam laser-induced grating-like effects on titanium films,” Appl. Surf. Sci. 255(5), 3028–3032 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. F. Ready, “Change of reflectivity of metallic surfaces during irradiation by CO2-TEA laser pulses,” IEEE J. Quantum Electron. 12(2), 137–142 (1976).
[CrossRef]

J. Appl. Phys. (10)

A. Y. Vorobyev and C. Guo, “Reflection of femtosecond laser light in multipulse ablation of metals,” J. Appl. Phys. 110(4), 043102 (2011).
[CrossRef]

J. Haverkamp, R. M. Mayo, M. A. Bourham, J. Narayan, C. Jin, and G. Duscher, “Plasma plume characteristics and properties of pulsed laser deposited diamond-like carbon films,” J. Appl. Phys. 93(6), 3627–3634 (2003).
[CrossRef]

M. Aghaei, S. Mehrabian, and S. H. Tavassoli, “Simulation of nanosecond pulsed laser ablation of copper samples: a focus on laser induced plasma radiation,” J. Appl. Phys. 104(5), 053303 (2008).
[CrossRef]

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97(6), 063305 (2005).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser blackening of platinum,” J. Appl. Phys. 104(5), 053516 (2008).
[CrossRef]

S.-B. Wen, X. Mao, R. Greif, and R. E. Russo, “Laser ablation induced vapor plume expansion into a background gas. II. Experimental analysis,” J. Appl. Phys. 101(2), 023115 (2007).
[CrossRef]

S. J. Tan and D. K. Gramotnev, “Heating effects in nanofocusing metal wedges,” J. Appl. Phys. 110(3), 034310 (2011).
[CrossRef]

D. Marla, U. V. Bhandarkar, and S. S. Joshi, “Critical assessment of the issues in the modeling of ablation and plasma expansion processes in the pulsed laser deposition of metals,” J. Appl. Phys. 109(2), 021101 (2011).
[CrossRef]

J. R. Ho, C. P. Grigoropoulos, and J. A. C. Humphrey, “Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals,” J. Appl. Phys. 78(7), 4696–4709 (1995).
[CrossRef]

J. Biomater. Appl. (1)

A. Kurella and N. B. Dahotre, “Review paper: surface modification for bioimplants: the role of laser surface engineering,” J. Biomater. Appl. 20(1), 5–50 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Laser Phys. (1)

V. N. Tokarev, “Viscous liquid expulsion in nanosecond UV laser ablation: From “clean” ablation to nanostructures,” Laser Phys. 16(9), 1291–1307 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

R. Kelly and J. E. Rothenberg, “Laser sputtering. Part III. The mechanism of the sputtering of metals low energy densities,” Nucl. Instrum. Methods Phys. Res. B 7–8, 755–763 (1985).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

S. Krishnan, K. J. Yugawa, and P. C. Nordine, “Optical properties of liquid nickel and iron,” Phys. Rev. B 55(13), 8201–8206 (1997).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multi-pulse femtosecond laser ablation,” Phys. Rev. B 72(19), 195422 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model,” Phys. Rev. B Condens. Matter 41(13), 8843–8859 (1990).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

T. E. Itina, J. Hermann, P. Delaporte, and M. Sentis, “Laser-generated plasma plume expansion: combined continuous-microscopic modeling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066406 (2002).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(6), 4716–4727 (1994).
[CrossRef] [PubMed]

Quantum Electron. (1)

A. V. Bulgakov and N. M. Bulgakova, “Thermal model of pulsed laser ablation under the conditions of formation and heating of a radiation-absorbing plasma,” Quantum Electron. 29(5), 433–437 (1999).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. Ya. Vorob’ev, “Reflection of the pulsed ruby laser radiation by a copper target in air and in vacuum,” Sov. J. Quantum Electron. 15(4), 490–493 (1985).
[CrossRef]

Sov. Phys. Tech. Phys. (4)

Yu. I. Dymshits, “Reflection of intense radiation from a thin metal film,” Sov. Phys. Tech. Phys. 22(7), 901–902 (1977).

S. D. Pudkov, “Change in the reflection coefficients of copper and aluminum at high temperatures,” Sov. Phys. Tech. Phys. 22(3), 389–391 (1977).

A. M. Bonch-Bruevich, Y. A. Imas, G. S. Romanov, M. N. Libenson, and L. N. Mal’tsev, “Effect of a laser pulse on the reflecting power of a metal,” Sov. Phys. Tech. Phys. 13(5), 640–643 (1968).

N. G. Basov, V. A. Boiko, O. N. Krokhin, O. G. Semenov, and G. V. Sklizkov, “Reduction of reflection coefficient for intense laser radiation on solid surfaces,” Sov. Phys. Tech. Phys. 13(1), 1581–1582 (1969).

Technology (1)

L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. In’tveld, and V. Kovalenko, “Laser nano-manufacturing—State of the art and challenges,” CIRP. Annals.—Manufacturing,” Technology 60(2), 735–755 (2011).

Other (5)

G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants 11th ed. (Longmans, 1956).

J. F. Ready, Effects of High-Power Laser Radiation (Academic Press, 1971).

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

D. B. Chrisey and G. K. Hubler, eds., Pulsed Laser Deposition of Thin Films (Wiley, 1994).

L. J. Radziemski and D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, Inc., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Hemispherical total reflectivity of Cu, Ni, and W as function of laser fluence for ablation in 1-atm air.

Fig. 3
Fig. 3

Surface temperature of Cu, Ni, and W as function of time at the plasma formation threshold laser fluence.

Fig. 4
Fig. 4

Reflection of the laser pulse from the sample-plasma system: I(t) is the incident laser pulse intensity; I(t)exp[(t)] is the laser pulse intensity that arrives at the sample surface, here θ(t) is the total optical thickness of the plasma; I(t)R(t))exp[(t)] is the laser pulse intensity reflected from the sample surface; I(t)R(t))exp[-2θ(t)] is the laser pulse intensity that comes out from the sample-plasma system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T surf (t)= (1R) a k π 0 t I(tτ) τ dτ+ T 0

Metrics