Abstract

Self-starting, steady-state χ(2)–lens mode-locking of a 1.34-μm diode-pumped Nd:YVO4 laser using intracavity second harmonic generation in PPMgSLT is demonstrated. Pulses as short as 3.6 ps with an average output power of ~1 W are obtained at a repetition rate of 120 MHz.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Armstrong, A. Robertson, N. Langford, and A. I. Ferguson, “1.3-µm diode-pumped Nd:YLF additive-pulse mode-locked laser,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 344–345.
  2. R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, “Diode-pumped passively mode-locked 1.3-µm Nd:YVO4 and Nd:YLF lasers by use of semiconductor saturable absorbers,” Opt. Lett. 21(17), 1378–1380 (1996).
    [CrossRef] [PubMed]
  3. S. C. Huang, H. L. Cheng, Y.-F. Chen, K. W. Su, Y. F. Chen, and K. F. Huang, “Diode-pumped passively mode-locked 1342 nm Nd:YVO4 laser with an AlGaInAs quantum-well saturable absorber,” Opt. Lett. 34(15), 2348–2350 (2009).
    [CrossRef] [PubMed]
  4. I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
    [CrossRef]
  5. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13(14), 5270–5278 (2005).
    [CrossRef] [PubMed]
  6. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18(6), 5754–5762 (2010).
    [CrossRef] [PubMed]
  7. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalate,” Opt. Lett. 35(7), 1016–1018 (2010).
    [CrossRef] [PubMed]
  8. K. A. Stankov, V. Kubecek, and K. Hamal, “Mode-locking of a Nd:YAlO3 laser at the 1.34-µm transition by a second-harmonic nonlinear mirror,” Opt. Lett. 16(7), 505–507 (1991).
    [CrossRef] [PubMed]
  9. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.3-?m Nd:YVO4 laser mode locked by cascaded ?(2) lens formation in periodically-poled stoichiometric lithium tantalate,” Europhoton 2010, 4th EPS-QEOD Europhoton Conference on Solid-State, Fiber and Waveguide Light Sources, Hamburg, Germany, Aug. 29 - Sep. 3, 2010, paper TuP23, Europhysics Conference Abstract Volume 34C.
  10. Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm with periodically poled LiNbO3.,” Opt. Lett. 36(5), 698–700 (2011).
    [CrossRef] [PubMed]
  11. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
    [CrossRef]
  12. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28(3), 194–196 (2003).
    [CrossRef] [PubMed]
  13. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [CrossRef]

2011

2010

2009

2007

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

2005

2003

1996

1994

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

1991

1968

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Blau, P.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Bruner, A.

Buchvarov, I.

Chen, C. D.

Chen, Y. F.

Chen, Y.-F.

Cheng, H. L.

Christov, G.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Chuchumishev, D.

Eger, D.

Fluck, R.

Hamal, K.

Holmgren, S. J.

Hu, X. P.

Huang, K. F.

Huang, S. C.

Iliev, H.

Katz, M.

Keller, U.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Kubecek, V.

Kurimura, S.

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalate,” Opt. Lett. 35(7), 1016–1018 (2010).
[CrossRef] [PubMed]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

Laurell, F.

Liu, Y. H.

Lu, J.

Lv, X. J.

Moser, M.

Oron, M. B.

Pan, S. D.

Pasiskevicius, V.

Petrov, V.

Ruschin, S.

Saltiel, S.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Stankov, K. A.

Su, K. W.

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

Weingarten, K. J.

Xie, Z. D.

Yuan, Y.

Zhang, G.

Zhao, G.

Zhao, L. N.

Zhu, S. N.

Appl. Phys. Lett.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate,” Appl. Phys. Lett. 90(5), 051115 (2007).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[CrossRef]

Opt. Commun.

I. Buchvarov, G. Christov, and S. Saltiel, “Transient behavior of frequency doubling mode-locker. Numerical analysis,” Opt. Commun. 107(3-4), 281–286 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. A. Armstrong, A. Robertson, N. Langford, and A. I. Ferguson, “1.3-µm diode-pumped Nd:YLF additive-pulse mode-locked laser,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 344–345.

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.3-?m Nd:YVO4 laser mode locked by cascaded ?(2) lens formation in periodically-poled stoichiometric lithium tantalate,” Europhoton 2010, 4th EPS-QEOD Europhoton Conference on Solid-State, Fiber and Waveguide Light Sources, Hamburg, Germany, Aug. 29 - Sep. 3, 2010, paper TuP23, Europhysics Conference Abstract Volume 34C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laser cavity: F1, F2 - pump objective, LC - Nd:YVO4 laser crystal, M, M1, M2 - highly reflecting mirrors, RC - radius of curvature, F3 – AR-coated focusing lens, NLC – nonlinear crystal, OC - output coupler. The physical cavity length amounts to 1.23 m.

Fig. 2
Fig. 2

Normalized single-pass second-harmonic (SH) power as a function of the crystal temperature (T) measured with the 10 mm long PPMgSLT crystal in the CW regime and 5% OC that has a leakage of ~1% at the SH.

Fig. 3
Fig. 3

(a) Input-output characteristics of the Nd:YVO4 laser with the 10% OC and 10 mm long PPMgSLT NLC. The mode-locking range is marked by the red oval. (b) Fast photodiode oscilloscope traces of the mode-locked laser

Fig. 4
Fig. 4

Autocorrelation trace (blue dots) and fit curve (in red) assuming sech2 pulse shape for the OC with T = 10% providing highest output power.

Fig. 5
Fig. 5

Input-output characteristics of the Nd:YVO4 laser with 10% OC and 20 mm long PPMgSLT. The mode-locking range is marked by the red oval.

Fig. 6
Fig. 6

Autocorrelation trace (blue dots) and fit assuming sech2 pulse shape (red curve) for 20-mm long PPMgSLT and 10% OC.

Metrics