Abstract

Fringe projection profilometry is generally used to measure the 3D shape of an object. In oblique-angle projection, the grating fringe cycle is broadened on the reference surface. A well-fitted, convenient, and quick cycle correction method is proposed in this study. Based on the proposed method, an accurate four-step phase shift method is developed. Comparative experiments show that the fringe projection profilometry based on the novel phase shift method can eliminate cycle error and significantly improve measurement accuracy. The relative error of the measurement is less than 1.5%. This method can be widely employed for measuring large objects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Wang and Q. Kemao, “Frequency guided methods for demodulation of a single fringe pattern,” Opt. Express 17(17), 15118–15127 (2009).
    [CrossRef] [PubMed]
  2. E. Stoykova, G. Minchev, and V. Sainov, “Fringe projection with a sinusoidal phase grating,” Appl. Opt. 48(24), 4774–4784 (2009).
    [CrossRef] [PubMed]
  3. M. Sasso, G. Chiappini, G. Palmieri, and D. Amodio, “Superimposed fringe projection for three-dimensional shape acquisition by image analysis,” Appl. Opt. 48(13), 2410–2420 (2009).
    [CrossRef] [PubMed]
  4. B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34(4), 416–418 (2009).
    [CrossRef] [PubMed]
  5. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
    [CrossRef]
  6. Z. Wang, H. Du, and H. Bi, “Out-of-plane shape determination in generalized fringe projection profilometry,” Opt. Express 14(25), 12122–12133 (2006).
    [CrossRef] [PubMed]
  7. G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
    [CrossRef]
  8. Z. Zhang, C. E. Towers, and D. P. Towers, “Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology,” Appl. Opt. 46(24), 6113–6119 (2007).
    [CrossRef] [PubMed]
  9. Z. Zhang, H. Ma, S. Zhang, T. Guo, C. E. Towers, and D. P. Towers, “Simple calibration of a phase-based 3D imaging system based on uneven fringe projection,” Opt. Lett. 36(5), 627–629 (2011).
    [CrossRef] [PubMed]
  10. Z. Zhang, H. Ma, T. Guo, S. Zhang, and J. Chen, “Simple, flexible calibration of phase calculation-based three-dimensional imaging system,” Opt. Lett. 36(7), 1257–1259 (2011).
    [CrossRef] [PubMed]
  11. L. Chen and C. Quan, “Fringe projection profilometry with nonparallel illumination: a least-squares approach,” Opt. Lett. 30(16), 2101–2103 (2005).
    [CrossRef] [PubMed]
  12. L. Chen and C. Quan, “Reply to comment on ‘Fringe projection profilometry with nonparallel illumination: a least-squares approach’,” Opt. Lett. 31(13), 1974–1975 (2006).
    [CrossRef]
  13. Z. Wang and H. Bi, “Comment on ‘Fringe projection profilometry with nonparallel illumination: a least-squares approach’,” Opt. Lett. 31(13), 1972–1973 (2006).
    [CrossRef] [PubMed]
  14. V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
    [CrossRef]
  15. A. Maurel, P. Cobelli, V. Pagneux, and P. Petitjeans, “Experimental and theoretical inspection of the phase-to-height relation in Fourier transform profilometry,” Appl. Opt. 48(2), 380–392 (2009).
    [CrossRef] [PubMed]
  16. B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
    [CrossRef]
  17. L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
    [CrossRef]
  18. H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
    [CrossRef]
  19. M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).
  20. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry: a phase mapping approach,” Appl. Opt. 24(2), 185–188 (1985).
    [CrossRef] [PubMed]
  21. L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49(9), 1539–1548 (2010).
    [CrossRef] [PubMed]
  22. M. Vo, Z. Wang, T. Hoang, and D. Nguyen, “Flexible calibration technique for fringe-projection-based three-dimensional imaging,” Opt. Lett. 35(19), 3192–3194 (2010).
    [CrossRef] [PubMed]
  23. Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

2011 (2)

2010 (3)

2009 (5)

2008 (2)

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

2007 (2)

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Z. Zhang, C. E. Towers, and D. P. Towers, “Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology,” Appl. Opt. 46(24), 6113–6119 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2003 (2)

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

2000 (2)

Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
[CrossRef]

1985 (1)

Amodio, D.

Asundi, A.

Bi, H.

Burton, D. R.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Carocci, M.

G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
[CrossRef]

Chen, J.

Chen, L.

Chen, Y.

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

Cheng, V. S.

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

Chiappini, G.

Chua, P. S.

Cobelli, P.

Du, H.

Fujigaki, M.

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

Garci´a, V.

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[CrossRef]

Guo, T.

Halioua, M.

Hoang, T.

Huang, L.

Hui, C.

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

Karout, S. A.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Kemao, Q.

Lalor, M. J.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Liu, H.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

Liu, H. C.

Luna, E.

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Ma, H.

Matui, T.

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

Maurel, A.

Minchev, G.

Morimoto, Y.

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

Nguyen, D.

Pagneux, V.

Palmieri, G.

Pan, B.

Petitjeans, P.

Quan, C.

Rajoub, B. A.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[CrossRef]

Reichard, K.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

Rodella, R.

G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
[CrossRef]

Sainov, V.

Salas, L.

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Salinas, J.

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Sansoni, G.

G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
[CrossRef]

Sasso, M.

Servi´n, M.

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Srinivasan, V.

Stoykova, E.

Su, W. H.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

Takagishi, A.

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

Towers, C. E.

Towers, D. P.

Vo, M.

Wang, H.

Wang, Z.

Xu, Q.

Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

Yang, R.

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

Yin, S.

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

You, Z.

Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

Zhang, S.

Zhang, Z.

Zhong, Y.

Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

Appl. Opt. (6)

IEEE Trans. Instrum. Meas. (1)

G. Sansoni, M. Carocci, and R. Rodella, “Calibration and performance evaluation of a 3-D imaging sensor based on the projection of structured light,” IEEE Trans. Instrum. Meas. 49(3), 628–636 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimatedfringe-pattern Projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Opt. Commun. (1)

H. Liu, W. H. Su, K. Reichard, and S. Yin, “Calibration-based phase-shifting projected fringe profilometry for accurate absolute 3D surface profile measurement,” Opt. Commun. 216(1–3), 65–80 (2003).
[CrossRef]

Opt. Eng. (2)

V. S. Cheng, R. Yang, C. Hui, and Y. Chen, “Optimal layout of fringe projection for three-dimensional measurement,” Opt. Eng. 47(5), 050503 (2008).
[CrossRef]

L. Salas, E. Luna, J. Salinas, V. Garc??a, and M. Serv??n, “Profilometry by fringe projection,” Opt. Eng. 42(11), 3307–3314 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48(2), 133–140 (2010).
[CrossRef]

Opt. Lett. (7)

Opt. Technol. (1)

Q. Xu, Y. Zhong, and Z. You, “System calibration technique of profilometry by projected grating,” Opt. Technol. 26(2), 126–133 (2000).

Proc. SPIE (1)

M. Fujigaki, A. Takagishi, T. Matui, and Y. Morimoto, “Development of real-time shape measurement system using whole space tabulation method,” Proc. SPIE 7066, 61–68 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of oblique-angle projection.

Fig. 2
Fig. 2

Simulation results: (a) phase curve on the projector surface, (b) sinusoidal of the grating, (c) projection grating on the projector, (d) correction grating, (e) spectrum of Fig. 2(c), (f) spectrum of Fig. 2(d).

Fig. 3
Fig. 3

Image of the object to be measured.

Fig. 4
Fig. 4

Images of deformation grating on the object surface obtained using the ordinary four-step phase shift method: (a) 0° phase shift, (b) 90° phase shift, (c) 180° phase shift, (d) 270° phase shift.

Fig. 6
Fig. 6

Experimental images obtained using the ordinary four-step phase shift method: (a) phase on the object surface, (b) phase on the reference surface, (c) phase difference between the object surface and the reference surface, (d) height of the object, (e) profiles along x axis, (f) height error.

Fig. 5
Fig. 5

Images of deformation grating on the reference surface obtained using the ordinary four-step phase shift method: (a) 0° phase shift, (b) 90° phase shift, (c) 180° phase shift, (d) 270° phase shift.

Fig. 7
Fig. 7

Images of deformation grating on the object surface obtained using the novel four-step phase shift method: (a) 0° phase shift, (b) 90° phase shift, (c) 180° phase shift, (d) 270° phase shift.

Fig. 9
Fig. 9

Images of an experimental object obtained using the novel four-step phase shift method: (a) phase on the object surface, (b) phase on the reference surface, (c) phase difference between the object surface and the reference surface, (d) height of the object, (e) profiles along x axis, (f) height error.

Fig. 8
Fig. 8

Images of deformation grating on the reference surface obtained using the novel four-step phase shift method: (a) 0° phase shift, (b) 90° phase shift, (c) 180° phase shift, (d) 270° phase shift.

Fig. 10
Fig. 10

Relationship curve of Tx and x.

Tables (1)

Tables Icon

Table 1 Height Error of Mathematical Simulation Using the Ordinary Four-Step Phase Shift Method

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x'=xcosαxsinαtanθ= xL ( L 2 + d 2 ) 1/2 L 2 + d 2 +dx ,
x= o p 2 x' Lopx'd .
φ(x')= 2πfo p 2 x' Lopx'd .
φ(x'')= 2πfo p 2 Mx'' LopMx''d .
ϕ(x'')= 2πfo p 2 Mx'' LopMx''d + Nπ 2 ,N=0,1,2,3.

Metrics