Abstract

A novel type of dual concentric core photonic crystal fiber (PCF) is proposed and theoretically analyzed, aiming at the design of tunable dispersive fiber elements for polarization-mode-dispersion (PMD) compensation. The adjustment of the fiber’s geometrical birefringence through the proper selection of structural parameters leads to very high values of differential group-delay (DGD). Moreover, the value of DGD can be dynamically tuned by infiltrating the outer core capillaries of the PCF with an optical liquid, which allows for the thermal control of its refractive index. Such fibers are envisaged as tunable dispersive fiber elements for PMD compensation or emulation modules.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  2. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
    [CrossRef]
  3. X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008).
    [CrossRef] [PubMed]
  4. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
    [CrossRef]
  5. F. Gérôme, J.-L. Auguste, J. Maury, J.-M. Blondy, and J. Marcou, “Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber,” J. Lightwave Technol. 24, 442–448 (2006).
    [CrossRef]
  6. A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627–635 (2005).
    [CrossRef] [PubMed]
  7. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14, 893–900 (2006).
    [CrossRef] [PubMed]
  8. D. C. Zografopoulos and E. E. Kriezis, “Tunable optical fiber polarization elements based on long-period gratings inscribed in birefringent microstructured fibers,” J. Opt. Soc. Am. B 25, 111–118 (2008).
    [CrossRef]
  9. C.-P. Yu, J.-H. Liou, S.-S. Huang, and H.-C. Chang, “Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation,” Opt. Express 16, 4443–4451 (2008).
    [CrossRef] [PubMed]
  10. R. DeSalvo, A. G. Wilson, J. Rollman, D. F. Schneider, L. M. Lunardi, S. Lumish, N. Agrawal, A. H. Steinbach, W. Baun, T. Wall, R. Ben-Michael, M. A. Itzler, A. Fejzuli, R. A. Chipman, G. T. Kiehne, and K. M. Kissa, “Advanced components and sub-system solutions for 40Gb/s transmission,” J. Lightwave Technol. 20, 2154–2181 (2002).
    [CrossRef]
  11. A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
    [CrossRef]
  12. H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep. 1, 283–303 (2004).
    [CrossRef]
  13. X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
    [CrossRef]
  14. L. Yan, M. C. Hauer, Y. Shi, X. S. Yao, P. Ebrahimi, Y. Wang, A. E. Willner, and W. L. Kath, “Polarization-mode-dispersion emulator using variable differential-group-delay (DGD) elements and its use for experimental importance sampling,” J. Lightwave Technol. 22, 1051–1058 (2004).
    [CrossRef]
  15. N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep. 4, 41–85 (2007).
    [CrossRef]
  16. A. Pitilakis, D. C. Zografopoulos, and E. E. Kriezis, “In-line polarization controller based on liquid-crystal photonic crystal fibers,” J. Lightwave Technol. 29, 2560–2569 (2011).
    [CrossRef]
  17. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
    [CrossRef]
  18. K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
    [CrossRef]
  19. J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
    [CrossRef]
  20. J. Ju, H. F. Xuan, W. Jin, S. Liu, and H. L. Ho, “Selective opening of airholes in photonic crystal fiber,” Opt. Lett. 35, 3886–3888 (2010).
    [CrossRef] [PubMed]
  21. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
    [CrossRef]
  22. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331–2340 (2002).
    [CrossRef]
  23. Cargille Labs, AAA series of refractive index liquids, http://www.cargille.com .
  24. T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).
  25. W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibers,” Opt. Express 13, 6541–6549 (2005).
    [CrossRef] [PubMed]
  26. Fibercore Ltd., FiberCore SM600 & SM1500, http://www.fibercore.com .
  27. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, and B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lightwave Technol. 18, 1418–1420 (2000).
    [CrossRef]
  28. Q. Yu and A. W. Willner, “Performance limits of first-order PMD compensators using fixed and variable DGD elements,” IEEE Photon. Technol. Lett. 14, 304–306 (2002).
    [CrossRef]
  29. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
    [CrossRef] [PubMed]

2011

2010

2009

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

2008

2007

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep. 4, 41–85 (2007).
[CrossRef]

2006

2005

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13, 627–635 (2005).
[CrossRef] [PubMed]

W. Wadsworth, A. Witkowska, S. Leon-Saval, and T. Birks, “Hole inflation and tapering of stock photonic crystal fibers,” Opt. Express 13, 6541–6549 (2005).
[CrossRef] [PubMed]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

2004

H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep. 1, 283–303 (2004).
[CrossRef]

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

L. Yan, M. C. Hauer, Y. Shi, X. S. Yao, P. Ebrahimi, Y. Wang, A. E. Willner, and W. L. Kath, “Polarization-mode-dispersion emulator using variable differential-group-delay (DGD) elements and its use for experimental importance sampling,” J. Lightwave Technol. 22, 1051–1058 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

2002

2000

1996

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Agrawal, N.

Ahuja, A.

Auguste, J.-L.

Azodolmolky, S.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Baun, W.

Ben-Michael, R.

Birks, T.

Birks, T. A.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Bjarklev, A.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Blondy, J.-M.

Botten, L. C.

Bülow, H.

H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep. 1, 283–303 (2004).
[CrossRef]

Chang, H.-C.

Chipman, R. A.

Cinkler, T.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Costa, L.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Couny, F.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

DeSalvo, R.

Domanski, A. W.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Dong, X.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Du, J.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Ebrahimi, P.

Eggleton, B. J.

Fang, Q.

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Fejzuli, A.

Franzl, G.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Fujisawa, T.

Gérôme, F.

Ghatak, A. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Goyal, I. C.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Gravey, P.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Hauer, M. C.

Ho, H. L.

Hou, L.

Hou, Z.

Huang, S.-S.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
[CrossRef]

Huttunen, A.

Itzler, M. A.

Jin, W.

Ju, J.

Kai, G.

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Kath, W. L.

Kiehne, G. T.

Kissa, K. M.

Knight, J. C.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Koshiba, M.

Kriezis, E. E.

Kuhlmey, B. T.

Kuo, P.

Lanne, S.

H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep. 1, 283–303 (2004).
[CrossRef]

Lázaro, J. A.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Le Rouzic, E.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Leon-Saval, S.

Lesiak, P.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Li, J.

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Li, S.

Liou, J.-H.

Litchinitser, N. M.

N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep. 4, 41–85 (2007).
[CrossRef]

Liu, B.

Liu, S.

Liu, Y.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Liu, Z.

X. Zhao, G. Zhou, S. Li, Z. Liu, D. Wei, Z. Hou, and L. Hou, “Photonic crystal fiber for dispersion compensation,” Appl. Opt. 47, 5190–5196 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Loukina, T.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Lumish, S.

Lunardi, L. M.

Mangan, B. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Marcou, J.

Martijn de Sterke, C.

Maury, J.

Maystre, D.

McPhedran, R. C.

Mikkelsen, B.

Montalvo, J.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Nielsen, T. N.

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Palai, P.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Pitilakis, A.

Ren, X.

X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
[CrossRef]

Renversez, G.

Roberts, P. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Rogers, J. A.

Rollman, J.

Russell, P. St. J.

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
[CrossRef]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Sabert, H.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

Saitoh, K.

Schneider, D. F.

Shi, Q.

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Shi, Y.

Sörensen, T.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

Steinbach, A. H.

Sumetsky, M.

N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep. 4, 41–85 (2007).
[CrossRef]

Szaniawska, K.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Teixeira, A.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Thyagarajan, K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Tomkos, I.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Törmä, P.

Tosi-Beleffi, G.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Varshney, R. K.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Vazquez, C.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Vlachos, K.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Wada, K.

Wadsworth, W.

Wall, T.

Wang, Y.

Wang, Z.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
[CrossRef] [PubMed]

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Wei, D.

Westbrook, P. S.

White, T. P.

Willner, A. E.

Willner, A. W.

Q. Yu and A. W. Willner, “Performance limits of first-order PMD compensators using fixed and variable DGD elements,” IEEE Photon. Technol. Lett. 14, 304–306 (2002).
[CrossRef]

Wilson, A. G.

Witkowska, A.

Wójcik, J.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Wolinski, T. R.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Xia, Y.

X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
[CrossRef]

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Xuan, H. F.

Yan, L.

Yao, X. S.

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yu, C.-P.

Yu, Q.

Q. Yu and A. W. Willner, “Performance limits of first-order PMD compensators using fixed and variable DGD elements,” IEEE Photon. Technol. Lett. 14, 304–306 (2002).
[CrossRef]

Zhang, X.

X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
[CrossRef]

Zhao, X.

Zhou, G.

Zografopoulos, D. C.

Zou, B.

Zsigmond, S.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, “A novel design of a dispersion compensating fiber,” IEEE Photon. Technol. Lett. 8, 1510–1512 (1996).
[CrossRef]

Q. Yu and A. W. Willner, “Performance limits of first-order PMD compensators using fixed and variable DGD elements,” IEEE Photon. Technol. Lett. 14, 304–306 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

K. Nielsen, D. Noordegraaf, T. Sörensen, A. Bjarklev, and T. P. Hansen, “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt. 7, L13–L20 (2005).
[CrossRef]

J. Opt. Fiber Commun. Rep.

H. Bülow and S. Lanne, “PMD compensation techniques,” J. Opt. Fiber Commun. Rep. 1, 283–303 (2004).
[CrossRef]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber Commun. Rep. 2, 435–461 (2005).
[CrossRef]

N. M. Litchinitser, M. Sumetsky, and P. S. Westbrook, “Fiber-based tunable dispersion compensation,” J. Opt. Fiber Commun. Rep. 4, 41–85 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Appl.

T. R. Woli?ski, P. Lesiak, K. Szaniawska, A. W. Doma?ski, and J. Wójcik, “Polarization mode dispersion in birefringent microstructured fibers,” Opt. Appl. 34, 541–549 (2004).

Opt. Commun.

X. Zhang, Y. Xia, Y. Huang, and X. Ren, “A novel tunable PMD compensation using linearly chirped fiber Bragg gratings,” Opt. Commun. 214, 123–127 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Netw. Commun.

A. Teixeira, L. Costa, G. Franzl, S. Azodolmolky, I. Tomkos, K. Vlachos, S. Zsigmond, T. Cinkler, G. Tosi-Beleffi, P. Gravey, T. Loukina, J. A. Lázaro, C. Vazquez, J. Montalvo, and E. Le Rouzic, “An integrated view on monitoring and compensation for dynamic optical networks: from management to physical layer,” Photon. Netw. Commun. 18, 191–210 (2009).
[CrossRef]

Proc. SPIE

J. Du, Y. Liu, Z. Wang, Q. Shi, Z. Liu, Q. Fang, J. Li, G. Kai, and X. Dong, “Two accesses to achieve air-core’s selective filling of a photonic bandgap fiber,” Proc. SPIE 6781, 678111 (2007).
[CrossRef]

Other

Cargille Labs, AAA series of refractive index liquids, http://www.cargille.com .

Fibercore Ltd., FiberCore SM600 & SM1500, http://www.fibercore.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Layout of the proposed birefringent dual-core PCF. The lattice pitch equals Λ and the air-hole radius is r. The hole radius rd of one ring is reduced in order to form the outer high-index fiber core. To induce birefringence, the radius r1 of two air-holes adjacent to the fiber core is modified, as well as that of the last ring r6 in order to control the level of confinement losses. The high-index ring capillaries are infiltrated with a liquid with refractive index nd. (b) Basic scheme of a PMD compensation module composed of a polarization controller, the proposed PCF and a signal quality control feedback circuit.

Fig. 2
Fig. 2

Chromatic dispersion coefficient D of the dual-core PCF under study for Λ = 2.3μm, r = r1 = r6 = 0.65μm, rd = 0.45μm, for three values of the infiltrated liquid’s index. A tuning efficiency of the notch wavelength equal to 0.64nm/104 RIU is demonstrated. Inset shows the modal intensity profile of the fundamental supermode for nd = 1.33 at 1.5μm (left) and 1.6μm (right).

Fig. 3
Fig. 3

Dispersion curves of the fundamental x- and y-polarized PCF supermode for a set of indicative cases (Λ = 2.3μm, r = 0.65μm, and rd = 0.45μm) where (a) r1 < r and (b) r1 > r and for the outer core formed either in the third (PCF A) or the fourth (PCF B) ring of air-holes. Insets show the corresponding modal birefringence, which drops to zero when both polarizations are coupled in the outer ring. The transition is abrupt and linear in the case of the fourth-ring core, while it exhibits a more gradual profile when the third core is selected as the outer fiber core. (c) Dispersion curves and modal birefringence of both the fundamental and the second-order supermode for the example studied in (b), with the outer core formed in the third ring. (d) Modal intensity profiles for both supermodes and polarizations, calculated at 1.55μm. In the long wavelength window, the fundamental supermode (FSM) is confined in the outer ring-core, while the second order one (SOSM) in the inner core, exhibiting high values of birefringence.

Fig. 4
Fig. 4

Differential-group-delay of the proposed dual-core PCF for Λ = 2.3μm, rd = 0.45μm and (a) r1 = 0.65r, nd = 1.36 and (b) r1 = 1.15r, nd = 1.32 (third-ring outer core), and r1 = 1.25r, nd = 1.31 (fourth-ring outer core). In the case of the fourth-ring DGD(λ) is almost piecewise-constant, obtaining high values in the window between the wavelength notches corresponding to the anti-crossing of the two polarizations of the fundamental mode, while in that of the third-ring DGD(λ) exhibits a Gaussian-like profile.

Fig. 5
Fig. 5

(a) Wavelength of maximum calculated DGD and (inset) refractive index values of the infiltrated liquid used in the simulations. (b) DGD spectral profile for two indicative cases where the third ring is infiltrated for varying values of nd. An increase of the liquid’s refractive index leads to a blue-shift of DGD(λ), without affecting its other spectral characteristics.

Fig. 6
Fig. 6

(a) Maximum DGD and birefringence values for the dual-core PCF under study obtained for various values of r1, with reference to the results shown in Fig. 5(a). DGD raises gradually with birefringence when the third ring is selected as the outer core. DGD values of up to 70 and 60 ps/m can be readily achieved for the outer core placed in the fourth and the third ring, respectively. (b) Modal birefringence and DGD profile when the fourth-ring is infiltrated for r1 = 1.3r, nd = 1.3 and r1 = 1.05r, nd = 1.33. As the slope of B(λ) is almost equal in the two cases, the maximum DGD value is not significantly affected by the fiber birefringence maximum value.

Fig. 7
Fig. 7

Spectral extent (FWHM) of the high-DGD window and (inset) wavelength increment Δλrise, defined as the distance between wavelengths at which DGD obtains 10% and 90% of its maximum value, for the PCF under study. Very abrupt transitions are predicted when the outer core is placed in the fourth ring of the PCF’s cladding.

Fig. 8
Fig. 8

DGD profiles for different values of the outer core radius and the index of the infiltrated liquid for r1 = 1.3r. Higher values of DGD can be obtained by simultaneously raising rd and nd, for the same wavelength window. Inset shows the maximum obtainable values of DGD with respect to the infiltrated capillary radius rd, for the set of cases studied.

Fig. 9
Fig. 9

DGD profiles for different values of the lattice pitch Λ, with relative structural parameters r/Λ and rd /Λ kept the same. Smaller values of Λ blue-shift DGD(λ) and lead to higher DGD. The spectral position of DGD(λ) can be controlled by adjusting the liquid’s index nd. The inset shows the maximum DGD value obtained in the cases studied, for Λ ranging from 1.9 to 2.5μm.

Fig. 10
Fig. 10

DGD-tuning characteristics for two indicative cases of the proposed dual-core birefringent PCF. DGD curves with respect to the index nd of the liquid infiltrating the third core for (a) r1 = 1.3r, rd = 0.75μm and (b) r1 = 1.3r, rd = 0.5μm. (c) The correspoding value of DGD at 1.55μm with respect to nd or, equivalently, a temperature variation ΔT, assuming a thermo-optic coefficient of −3.34 × 104RIU/°C. (d) A proposed layout for the efficient tuning of DGD in the proposed PCF: light is in- and out-coupled at ambient temperature where both polarizations are confined in the same core and it is gradually heated in order to induce the desired value of DGD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DGD = 1 v g , y 1 v g , x = 1 c ( B λ d B d λ ) ,

Metrics