Abstract

Plasmonic mode-size converters (PMSCs) for long-range surface plasmon polaritons (LR-SPPs) at the wavelength of 1.55 μm are presented. The PMSC is composed of an insulator-metal-insulator waveguide (IMI-W), a laterally tapered insulator-metal-insulator-metal-insulator waveguide (LT-IMIMI-W), and an IMIMI-W in series. The mode-intensity sizes of the LR-SPPs for the IMI-W and the IMIMI-W were not only calculated using a finite element method but were also experimentally measured. The propagation losses of the IMI-W and the IMIMI-W as well as the coupling losses between them were analyzed by the cut-back method to investigate the effect of LT-IMIMI-Ws. By using the PMSC with a ∼27 ° angled LT-IMIMI-W, the coupling loss between a polarization-maintaining fiber and a 3 μm-wide IMIMI-W was reduced by ∼3.4 dB. Moreover, the resulting mode-intensity in the output of the PMSC was squeezed to ∼35% of the mode-intensity in the input IMI-W. The PMSC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Berlin, Germany: Springer-Verlag, 1988).
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [CrossRef] [PubMed]
  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
    [CrossRef] [PubMed]
  4. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
    [CrossRef]
  5. J. J. Ju, S. Park, M.-s. Kim, J.T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications,” J. Lightwave Technol. 26, 1510–1518 (2008).
    [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef] [PubMed]
  7. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  8. H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
    [CrossRef]
  9. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  10. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
    [CrossRef]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  12. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with ?/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [CrossRef] [PubMed]
  13. J. Yoon, S. H. Song, and S. Park, “Flat-top surface plasmon-polariton modes guided by double-electrode structures,” Opt. Express 15, 17151–17162 (2007).
    [CrossRef] [PubMed]
  14. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express 17, 19996–20011 (2009).
    [CrossRef] [PubMed]
  15. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient micro-scale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [CrossRef] [PubMed]
  16. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
    [CrossRef]
  17. ChemOptics Inc., Available: http://www.chemoptics.co.kr/
  18. E. D. Palik, Handbook of Optical Constants of Solids (Berlin, Academic, New York, 1985).
  19. MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com/

2011 (2)

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

2010 (1)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

2009 (1)

2008 (2)

2007 (2)

2006 (2)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient micro-scale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
[CrossRef]

2005 (4)

2004 (1)

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Arbel, D.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
[CrossRef]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

Brongersma, M. L.

Capasso, F.

Catrysse, P. B.

Charbonneau, R.

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Ginzburg, P.

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Han, Z.

He, S.

Jeong, I.-S.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

Ju, J. J.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

J. J. Ju, S. Park, M.-s. Kim, J.T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications,” J. Lightwave Technol. 26, 1510–1518 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

Kim, J.T.

Kim, M.-S.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

J. J. Ju, S. Park, M.-s. Kim, J.T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications,” J. Lightwave Technol. 26, 1510–1518 (2008).
[CrossRef]

Kjaer, K.

Kwong, D. L.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Lahoud, N.

Larsen, M. S.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Lee, J.-M.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

Lee, M.-H.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

J. J. Ju, S. Park, M.-s. Kim, J.T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications,” J. Lightwave Technol. 26, 1510–1518 (2008).
[CrossRef]

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

Leosson, K.

Liow, T. Y.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Liu, L.

Lo, G. Q.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Loncar, M.

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Mattiussi, G.

Nikolajsen, T.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Orenstein, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Berlin, Academic, New York, 1985).

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

Park, H.-R.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

Park, J.-M.

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

Park, S.

Park, S. K.

Park, Y. J.

Raether, H.

H. Raether, Surface Plasmons (Berlin, Germany: Springer-Verlag, 1988).

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Selker, M. D.

Song, S. H.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

Woolf, D.

Yoon, J.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Zhu, S.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Zia, R.

Appl. Phys. Lett. (1)

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev. 108, 494–521 (2008).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.-s. Kim, J. J. Ju, and M.-H. Lee, “Enhanced Transmission in a Fiber-Coupled Au Stripe Waveguide System,” IEEE Photon. Technol. Lett. 22(2), 100–102 (2010).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

H.-R. Park, M.-S. Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg Gratings for Long-Range Surface Plasmon Polaritons Fabricated via Spin Coating of a Transparent Silver Ink,” IEEE Trans. Nanotechnol. 10(4), 844–848 (2011).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B,  73, 035407 (2006).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[CrossRef] [PubMed]

Other (4)

H. Raether, Surface Plasmons (Berlin, Germany: Springer-Verlag, 1988).

ChemOptics Inc., Available: http://www.chemoptics.co.kr/

E. D. Palik, Handbook of Optical Constants of Solids (Berlin, Academic, New York, 1985).

MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the proposed PMSC successively composed of an input IMI-W (input region), an LT-IMIMI-W (taper region), and an output IMIMI-W (output region). The width, Wi, of the input region is 6 μm and the width of the output IMIMI-W (Wol and Wou) is 2 or 3 μm. The width of the laterally tapered IMIMI-W of the taper region was linearly varied from Wi to Wol. Ltl and Ltu denote the lower and upper lengths of the taper region, respectively. The θ denotes the taper angle which depends on the length Ltl. Here, the upper stripes in the taper and output regions have the same design parameters of lower stripes. The thicknesses of the Au layers are 14 nm and the central insulator thickness, dc, is set to 500 nm. The refractive indices for cladding and Au are 1.450 and 0.550 – 11.4912i at the wavelength of 1.55 μm, respectively.

Fig. 2
Fig. 2

(a)–(b) s0 and a0 modes in the IMI structure. (c)–(f) Ss0, Sa0, As0, and Aa0 modes in the IMIMI structure. (g) Effective refractive index of the SPP modes as a function of the waveguide width at the wavelength of 1.55 μm. (h) Horizontal and vertical mode-intensity sizes for the s0 and Ss0 modes as a function of the waveguide width. The thickness of the Au waveguide is 14 nm and the refractive index of the cladding is 1.45.

Fig. 3
Fig. 3

(a) Propagation loss of the IMI-W and coupling loss between the IMI-W and the PMF at the wavelength of 1.55 μm, as a function of the waveguide width. (b) Propagation losses of the IMIMI-W and coupling loss between the IMIMI-W and the IMI-W. The data points were averaged from two sets of waveguides.

Fig. 4
Fig. 4

LT-IMIMI-W coupling losses between 6 μm-wide IMI-W and 3 μm-wide IMIMI-W at the wavelength of 1.55 μm, as a function of the tapered angle (θ). The inset in Fig. 4 represents the bow-tied PMSC for the measurements of the LT-IMIMI-W coupling loss. The data points were averaged from three sets of waveguides.

Fig. 5
Fig. 5

Optical microscope images of the mode-intensity profiles for the (a) polarization-maintaining fiber (PMF), (b) 6 μm-wide IMI-W, (e) 2 μm-wide IMIMI-W and (f) 3 μm-wide IMIMI-W. An IR-Vidicon camera was used to take the images using a 50× objective lens. The contour colors represent arbitrary values. The horizontal and vertical mode-intensity sizes were evaluated by fitting Gaussian distributions of the captured mode images.

Tables (1)

Tables Icon

Table 1 Comparison of dimensions and losses for the bow-tied PMSC and the partially overlapped IMIMI-W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CL LT IMIMI = ( IL PMSC PL IMI × ( L i + L o ) 2 × CL PMF PL IMIMI × L IMIMI ) / 2

Metrics