Abstract

We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
    [CrossRef]
  2. D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
    [CrossRef]
  3. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [CrossRef] [PubMed]
  4. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [CrossRef] [PubMed]
  5. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
    [CrossRef]
  6. K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photon. Technol. Lett. 23(17), 1270–1272 (2011).
    [CrossRef]
  7. A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
    [CrossRef]
  8. M. N. Sysak, J. O. Anthes, D. Liang, J. E. Bowers, O. Raday, and R. Jones, “A hybrid silicon sampled grating DBR tunable laser,” in Group IV Photonics, 2008 5th IEEE International Conference on, (Cardiff, Wales, 2008), pp. 55–57.
  9. H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
    [CrossRef]
  10. H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
    [CrossRef]
  11. N. Le Thomas, R. Houdré, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24(12), 2964–2971 (2007).
    [CrossRef]
  12. V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
    [CrossRef]

2011

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photon. Technol. Lett. 23(17), 1270–1272 (2011).
[CrossRef]

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

2010

2009

2007

N. Le Thomas, R. Houdré, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24(12), 2964–2971 (2007).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

2006

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

1997

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

1996

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

1988

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Amantea, R.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Baets, R.

Bogaerts, W.

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photon. Technol. Lett. 23(17), 1270–1272 (2011).
[CrossRef]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[CrossRef] [PubMed]

Bovington, J.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Bowers, J. E.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Bright, V. M.

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

Burns, D. M.

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

Carlson, N. W.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Carr, L. A.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Chen, H.-W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Chen, R. T.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

Cohen, O.

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Evans, G. A.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Fang, A. W.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Gustafson, S.

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

Hammer, J. M.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Hawrylo, F. Z.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Hosseini, A.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

Houdré, R.

Jacob-Mitos, M.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Jágerská, J.

James, E. A.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Jones, R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Kaiser, C. J.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Kirk, J. B.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Koch, B. R.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Krauss, T. F.

Kuo, Y.-H.

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Kwong, D.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

Le Thomas, N.

Liang, D.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Liao, L.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Lurie, M.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

O’Brien, D.

Palfrey, S. L.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Paniccia, M.

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Paniccia, M. J.

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

Park, H.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

Parriaux, O.

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

Reichert, W. F.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

Rogier, H.

Sychugov, V. A.

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

Sysak, M. N.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Tang, Y.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Tishchenko, A. V.

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

Usievich, B. A.

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

Van Acoleyen, K.

Watson, E. A.

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

Wong, K.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

Zhang, Y.

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

Appl. Phys. Lett.

N. W. Carlson, G. A. Evans, R. Amantea, S. L. Palfrey, J. M. Hammer, M. Lurie, L. A. Carr, F. Z. Hawrylo, E. A. James, C. J. Kaiser, J. B. Kirk, and W. F. Reichert, “Electronic beam steering in monolithic grating?surface? emitting diode laser arrays,” Appl. Phys. Lett. 53(23), 2275–2277 (1988).
[CrossRef]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1?×?12 Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Park, M. N. Sysak, H.-W. Chen, A. W. Fang, D. Liang, L. Liao, B. R. Koch, J. Bovington, Y. Tang, K. Wong, M. Jacob-Mitos, R. Jones, and J. E. Bowers, “Device and Integration Technology for Silicon Photonic Transmitters,” IEEE J. Sel. Top. Quantum Electron. 17(3), 671–688 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A Hybrid AlGaInAs–Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19(4), 230–232 (2007).
[CrossRef]

K. Van Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photon. Technol. Lett. 23(17), 1270–1272 (2011).
[CrossRef]

A. W. Fang, H. Park, R. Jones, O. Cohen, M. Paniccia, and J. E. Bowers, “A Continuous Wave Hybrid AlGaInAs-Silicon Evanescent Laser,” IEEE Photon. Technol. Lett. 18(10), 1143–1145 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Eng.

V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, and O. Parriaux, “Optimization and control of grating coupling to or from a silicon?based optical waveguide,” Opt. Eng. 35(11), 3092–3100 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. M. Burns, V. M. Bright, S. Gustafson, and E. A. Watson, “Optical beam steering using surface micromachined gratings and optical phased arrays,” Proc. SPIE 3131, 99–110 (1997).
[CrossRef]

Other

M. N. Sysak, J. O. Anthes, D. Liang, J. E. Bowers, O. Raday, and R. Jones, “A hybrid silicon sampled grating DBR tunable laser,” in Group IV Photonics, 2008 5th IEEE International Conference on, (Cardiff, Wales, 2008), pp. 55–57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

a) Schematic diagram of the 16-channel grating array with independently tuned channels for 2-dimensional beam steering. A multi-mode interferometer (MMI) tree split the input into 16 channels which were then independently phase tuned and coupled to a grating array. Beam steering in the longitudinal axis θ was accomplished via wavelength tuning while beam steering in the lateral axis ψ was accomplished by phase tuning. b) Schematic diagrams illustrating the respective orientations of the longitudinal axis θ and the lateral axis ψ.

Fig. 2
Fig. 2

Scanning electron microscope images of (a) the grating array cross-section, (b) a single surface waveguide grating test structure, and (c) optical microscope images of the thermo-optic phase tuners.

Fig. 3
Fig. 3

a) Beam profiler measurement system, and b) Fourier imaging system with removable lens for near field imaging. The removable lens is shown in green together with the associated far field ray traces, while the non-removable lenses are shown in red with the associated near field ray traces. ECL = external cavity laser; DUT = device under test.

Fig. 4
Fig. 4

(a) Normalized optical output profile in the far field measured using the beam profiler; (b) Far field images captured using the Fourier imager for wavelengths from 1625 nm (top) to 1525 nm (bottom); (c) Plot of the longitudinal beam angle in the far field measured for an individual grating (blue) and a 16-channel grating array (red) using both the Fourier imaging system (square markers) and beam profiler (diamond markers), with the simulated output calculated from the Bragg equation shown for comparison.

Fig. 5
Fig. 5

Plot of the longitudinal angular deviation in the far field (calculated relative to the output for 50% duty cycle and full width (i.e. width extending across the entire array of test structures) measured and simulated as a function of grating width and duty cycle. Shown to the right are SEM images of a 50% duty cycle grating with 0.9 μm width (upper left), 400 nm width (lower left), 50% duty cycle full width (upper right), and 20% duty cycle full width (lower right).

Fig. 6
Fig. 6

Plots as a function of grating duty cycle (a) and width (b) of the longitudinal beam width (FWHM) in the far field calculated from the scattered power distribution in the near field (blue) and measured directly from the far field image (red) at 1555 nm.

Fig. 7
Fig. 7

Relative thermal gradient across the 16-channel array when 15 channels were driven at 30 mW and a single central channel was driven at higher thermal powers. Temperatures (relative to the corresponding values when all channels were driven at 30 mW) were calculated from the change in resistance of each tuner; the relationship between resistance and temperature for the tuners was calibrated separately using a thermocouple to record the temperature of a bulk silicon substrate on which identical tuners had been fabricated.

Fig. 8
Fig. 8

Hill-climber algorithm implemented in NI LabVIEW and used to optimize the phase tuning of the 16-channel grating array for beam outcoupling at a given lateral angle ψ using feedback from the Fourier imaging system.

Fig. 9
Fig. 9

Beam profile in ψ axis and corresponding sections of the far field image for a wavelength of 1555 nm (a) without phase tuning and (b) with phase tuning after applying the optimization algorithm. The 2° discrepancy between measured and theoretical side lobe location is attributed to lens Seidel aberrations.

Fig. 10
Fig. 10

Measured beam profiles at 1555 nm wavelength as the beam was swept across the field of view in the ψ axis at 1° increments.

Fig. 11
Fig. 11

Plots of the 2D beam profiles at the corners and centre of the field of view located using the LUT. The field of view was chosen so as to exclude the secondary peaks.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sinθ= n eff Λ λ 0 Λ
sinψ= λ 0 ϕ 2πd

Metrics