Abstract

Fine electrically-conductive patterns of silver nanoparticles ink have been laser printed using the laser-induced forward transfer (LIFT) technique. LIFT is a technique that offers the possibility of printing patterns with high spatial resolution from a wide range of materials in solid or liquid state. Influence of drying the ink film, previous to its transfer, on the printed droplet morphology is discussed. The laser pulse energy and donor-receiver substrate separation were systematically varied and their effects on the transferred droplets were analyzed. The use of an intermediate titanium dynamic release layer was also investigated and demonstrated the possibility of a better control of both the size and shape of the printed patterns. Conditions have been determined for printing flat-top droplets with sharp edges. 21 µm width silver lines with 80 nm thickness have been printed with a smooth convex profile. Electrical resistivities of the transferred patterns are only 5 times higher than the bulk silver.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).
  2. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
    [CrossRef]
  3. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
    [CrossRef] [PubMed]
  4. R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 475–485 (2000).
    [CrossRef] [PubMed]
  5. H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
    [CrossRef] [PubMed]
  6. R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
    [CrossRef]
  7. J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
    [CrossRef]
  8. B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010).
    [CrossRef]
  9. D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
    [CrossRef]
  10. J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006).
    [CrossRef] [PubMed]
  11. B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004).
    [CrossRef] [PubMed]
  12. J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
    [CrossRef]
  13. S. Molesa, D. R. Redinger, D. C. Huang, and V. Subramanian, “High-quality inkjet-printed multilevel Interconnects and inductive components on plastic for ultra-low-cost RFID applications,” MRS. Symp. Proc., 769, H8.3.1 (2003).
  14. A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
    [CrossRef]
  15. D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
    [CrossRef] [PubMed]
  16. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
    [CrossRef]
  17. C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
    [CrossRef]
  18. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
    [CrossRef]
  19. A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
    [CrossRef]
  20. K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
    [CrossRef]
  21. C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
    [CrossRef]
  22. M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
    [CrossRef]
  23. J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
    [CrossRef]
  24. M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
    [CrossRef] [PubMed]
  25. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
    [CrossRef]
  26. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
    [CrossRef]
  27. R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
    [CrossRef]
  28. R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
    [CrossRef]
  29. L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
    [CrossRef]
  30. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
    [CrossRef]
  31. V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
    [CrossRef]
  32. M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
    [CrossRef]
  33. M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
    [CrossRef]
  34. J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
    [CrossRef] [PubMed]
  35. P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
    [CrossRef]
  36. H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
    [CrossRef]
  37. M. Barret, S. Sanaur, and P. Collot, “Inkjet-printed low-voltage organic thin-film transistors: towards low-cost flexible electronics,” Mater. Res. Soc. Symp. Proc. 1003 (2007).

2011 (2)

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

2010 (5)

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

2009 (6)

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

2008 (2)

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[CrossRef] [PubMed]

2007 (4)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

2006 (6)

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
[CrossRef]

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006).
[CrossRef] [PubMed]

2005 (2)

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[CrossRef] [PubMed]

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

2004 (4)

B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004).
[CrossRef] [PubMed]

M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

2000 (2)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 475–485 (2000).
[CrossRef] [PubMed]

1997 (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Alloncle, A. P.

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Arias, A. C.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Arnold, C. B.

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[CrossRef]

Auyeung, R. C.

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Auyeung, R. C. Y.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

Azuma, H.

M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).

Bakajin, O.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Banks, D. P.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Bieri, N. R.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Birnbaum, A. J.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

Bohandy, J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Boutopoulos, C.

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

Chabinyc, M. L.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Charipar, N. A.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Chou, K. S.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[CrossRef] [PubMed]

Chung, J.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Cibert, C.

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

Colina, M.

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

de Gans, B. J.

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
[CrossRef]

B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004).
[CrossRef] [PubMed]

de Laat, A. W. M.

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

Deegan, R. D.

R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 475–485 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Delaporte, P.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

Diallo, A. K.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Dinca, V.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Dinescu, M.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Dockendorf, C.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Dominguez, J.

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

Domininguez, J.

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

Duocastella, M.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

Dupont, T. F.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Eason, R. W.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Fages, F.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Fardel, R.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Farsari, M.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Fernández-Pradas, J. M.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

Fotakis, C.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Giannakopoulos, K.

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

Grigoropoulos, C. P.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Grivas, C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Huang, K. C.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[CrossRef] [PubMed]

Huber, G.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Huston, A. L.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

Ikegawa, M.

M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).

Jeong, S.

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

Kafetzopoulos, D.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Kang, B. J.

B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010).
[CrossRef]

Kaur, K. S.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

Kim, D.

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

Kim, H.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

Ko, S.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Kovacs, E.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Lee, H. H.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[CrossRef] [PubMed]

Lee, S. H.

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

Limb, S.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Lippert, T.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Lujan, R.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Mathews, S. A.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

May-Smith, T. C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

Moldovan, A.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Moon, J.

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

Moon, J. H.

J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006).
[CrossRef] [PubMed]

Morenza, J. L.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

Nagel, M.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Nagel, S. R.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Nüesch, F.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Oh, J. H.

B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010).
[CrossRef]

Palla-Papavlu, A.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Pandis, C.

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

Paraico, I.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Park, B. K.

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

Park, J. H.

J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006).
[CrossRef] [PubMed]

Patrascioiu, A.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

Perelaer, J.

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
[CrossRef]

Piqué, A.

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

Pissis, P.

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

Popescu, A.

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Poulikakos, D.

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

Rapp, L.

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Ready, S. E.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Salleo, A.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Schneider, C. W.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Schubert, U. S.

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
[CrossRef]

B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004).
[CrossRef] [PubMed]

Serra, P.

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

M. Duocastella, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Film-free laser forward printing of transparent and weakly absorbing liquids,” Opt. Express 18(21), 21815–21825 (2010).
[CrossRef] [PubMed]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[CrossRef]

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

Sevilla, L.

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

Shaw-Stewart, J.

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

Smith, P. J.

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

Soltman, D.

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[CrossRef] [PubMed]

Street, R. A.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Subramanian, V.

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[CrossRef] [PubMed]

van den Berg, A. M. J.

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

Videlot-Ackermann, C.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

Wang, J.

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Witten, T. A.

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Wokaun, A.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Wong, W. S.

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

Zalalutdinov, M.

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

Zergioti, I.

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. Perelaer, B. J. de Gans, and U. S. Schubert, “Ink-jet printing and microwave sintering of conductive silver tracks,” Adv. Mater. (Deerfield Beach Fla.) 18(16), 2101–2104 (2006).
[CrossRef]

J. Wang, R. C. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. (Deerfield Beach Fla.) 22(40), 4462–4466 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[CrossRef]

C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, and I. Zergioti, “Polymer/carbon nanotube composite patterns via laser induced forward transfer,” Appl. Phys. Lett. 96(4), 041104 (2010).
[CrossRef]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[CrossRef]

D. Kim, S. Jeong, B. K. Park, and J. Moon, “Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions,” Appl. Phys. Lett. 89(26), 264101 (2006).
[CrossRef]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assisted forward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (3)

R. C. Y. Auyeung, H. Kim, A. J. Birnbaum, M. Zalalutdinov, S. A. Mathews, and A. Piqué, “Laser decal transfer of freestanding microcantilevers and microbridges,” Appl. Phys., A Mater. Sci. Process. 97(3), 513–519 (2009).
[CrossRef]

R. C. Y. Auyeung, H. Kim, N. A. Charipar, A. J. Birnbaum, S. A. Mathews, and A. Piqué, “Laser forward transfer based on a spatial light modulator,” Appl. Phys., A Mater. Sci. Process. 102(1), 21–26 (2011).
[CrossRef]

H. Kim, R. C. Y. Auyeung, S. H. Lee, A. L. Huston, and A. Piqué, “Laser forward transfer of silver electrodes for organic thin-film transistors,” Appl. Phys., A Mater. Sci. Process. 96(2), 441–445 (2009).
[CrossRef]

Appl. Surf. Sci. (2)

M. Duocastella, A. Patrascioiu, V. Dinca, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Study of liquid deposition during laser printing of liquids,” Appl. Surf. Sci. 257(12), 5255–5258 (2011).
[CrossRef]

L. Rapp, C. Cibert, A. P. Alloncle, and P. Delaporte, “Characterization of organic material micro-structures transferred by laser in nanosecond and picosecond regimes,” Appl. Surf. Sci. 255(10), 5439–5443 (2009).
[CrossRef]

J. Appl. Phys. (5)

M. Colina, M. Duocastella, J. M. Fernández-Pradas, P. Serra, and J. L. Morenza, “Laser-induced forward transfer of liquids: Study of the droplet ejection process,” J. Appl. Phys. 99(8), 084909 (2006).
[CrossRef]

M. Duocastella, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Time-resolved imaging of the laser forward transfer of liquids,” J. Appl. Phys. 106(8), 084907 (2009).
[CrossRef]

A. Palla-Papavlu, V. Dinca, I. Paraico, A. Moldovan, J. Shaw-Stewart, C. W. Schneider, E. Kovacs, T. Lippert, and M. Dinescu, “Microfabrication of polystyrene microbead arrays by laser induced forward transfer,” J. Appl. Phys. 108(3), 033111 (2010).
[CrossRef]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[CrossRef]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal-deposition from a supported metal-film using an excimer laser,” J. Appl. Phys. 60(4), 1538–1539 (1986).
[CrossRef]

J. Heat Transfer (1)

J. Chung, S. Ko, C. P. Grigoropoulos, N. R. Bieri, C. Dockendorf, and D. Poulikakos, “Damage-free low temperature pulsed laser printing of gold nanoinks on polymer,” J. Heat Transfer 127(7), 724 (2005).
[CrossRef]

J. Laser Micro/Nanoeng. (2)

P. Serra, J. M. Fernández-Pradas, M. Colina, M. Duocastella, J. Domininguez, and J. L. Morenza, “Laser-induced forward transfer: a direct-writing technique for biosensors preparation,” J. Laser Micro/Nanoeng. 1(3), 236–242 (2006).
[CrossRef]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Micro/Nanoeng. 2(1), 1–21 (2007).
[CrossRef]

J. Mater. Chem. (1)

A. M. J. van den Berg, A. W. M. de Laat, P. J. Smith, J. Perelaer, and U. S. Schubert, “Geometric control of inkjet printed features using a gelating polymer,” J. Mater. Chem. 17(7), 677 (2007).
[CrossRef]

Langmuir (3)

D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir 24(5), 2224–2231 (2008).
[CrossRef] [PubMed]

J. H. Park and J. H. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir 22(8), 3506–3513 (2006).
[CrossRef] [PubMed]

B. J. de Gans and U. S. Schubert, “Inkjet printing of well-defined polymer dots and arrays,” Langmuir 20(18), 7789–7793 (2004).
[CrossRef] [PubMed]

Mater. Today (1)

R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, “Jet printing flexible displays,” Mater. Today 9(4), 32–37 (2006).
[CrossRef]

MRS Bull. (1)

C. B. Arnold, P. Serra, and A. Piqué, “Laser direct-write techniques for printing of complex materials,” MRS Bull. 32(01), 23–32 (2007).
[CrossRef]

Nanotechnology (1)

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[CrossRef] [PubMed]

Nature (1)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Capillary flow as the cause of ring stains from dried liquid drop,” Nature 389(6653), 827–829 (1997).
[CrossRef]

Opt. Express (1)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(11 Pt B), 756–765 (2000).
[CrossRef] [PubMed]

R. D. Deegan, “Pattern formation in drying drops,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(1), 475–485 (2000).
[CrossRef] [PubMed]

Thin Solid Films (3)

B. J. Kang and J. H. Oh, “Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate,” Thin Solid Films 518(10), 2890–2896 (2010).
[CrossRef]

J. M. Fernández-Pradas, M. Colina, P. Serra, J. Dominguez, and J. L. Morenza, “Laser-induced forward transfer of biomolecules,” Thin Solid Films 453–454, 27–30 (2004).
[CrossRef]

V. Dinca, M. Farsari, D. Kafetzopoulos, A. Popescu, M. Dinescu, and C. Fotakis, “Patterning parameters for biomolecules microarrays constructed with nanosecond and femtosecond UV lasers,” Thin Solid Films 516(18), 6504–6511 (2008).
[CrossRef]

Trans. Jpn. Soc. Mech. Eng. Ser. B (1)

M. Ikegawa and H. Azuma, “Droplet behaviors on substrates in thin film formation using ink-jet printing,” Trans. Jpn. Soc. Mech. Eng. Ser. B 47(3), 490–496 (2004).

Other (2)

S. Molesa, D. R. Redinger, D. C. Huang, and V. Subramanian, “High-quality inkjet-printed multilevel Interconnects and inductive components on plastic for ultra-low-cost RFID applications,” MRS. Symp. Proc., 769, H8.3.1 (2003).

M. Barret, S. Sanaur, and P. Collot, “Inkjet-printed low-voltage organic thin-film transistors: towards low-cost flexible electronics,” Mater. Res. Soc. Symp. Proc. 1003 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical microscope image of microarray of laser-printed droplets of silver nanoparticles ink for different energies at film to receiver substrate distance of 50 μm before (a) and after (b) curing at 150°C. The laser pulse energy used for transferring the droplet is indicated in the image.

Fig. 2
Fig. 2

Laser printing of silver nanoparticles ink: circles are without DRL; triangles are with 30 nm Ti DRL. The solid lines are fits to the experimental data points. (a) Plot of the transferred droplets size vs. laser pulse energy: solid marks are ink printed after spin-coating, open marks are ink printed after drying 4 hours in air (b) Plot of the transferred droplets size vs. film to substrate spacing: solid marks are at laser energy of 5 µJ, open marks are at 10 µJ.

Fig. 3
Fig. 3

AFM 3D image of a laser-printed droplet of silver nanoparticles ink cured at 150°C.

Fig. 4
Fig. 4

Optical microscope image of laser-printed droplets of silver nanoparticles ink using 30 nm thick Ti film as DRL and donor-receiver separation of 50 μm before (a) and after (b,c) curing at 150°C. The laser pulse energies used for printing are indicated in the image.

Fig. 5
Fig. 5

Laser-printed droplets of silver nanoparticles ink at laser energy of 5 µJ, after curing at 150°C for 30 min, as a function of the film to receiver substrate spacing d: (a) without DRL and (b) with 30 nm Ti-DRL. The distance d is indicated in the images.

Fig. 6
Fig. 6

AFM 3D image and associated profile of a laser-printed flat-top droplet of silver nanoparticles ink cured at 150°C.

Fig. 7
Fig. 7

AFM 3D image with associated profiles of two laser-printed flat-top droplets of silver nanoparticles ink with an overlapping of 3 µm cured at 150°C. Red, green, blue and pink markers are profiles position.

Fig. 8
Fig. 8

AFM 3D images of laser-printed lines of silver nanoparticles ink cured at 150°C: (a) line with associated profiles (red, green, blue and pink markers are profiles positions), (b) channel between two lines with associated profile.

Fig. 9
Fig. 9

Optical microscope image of laser-printed lines of silver nanoparticles ink cured at 150°C on polyethylene terephthalate substrate using 30 nm thick Ti film as DRL, donor-receiver separation of 50 μm and laser energy of 5 µJ: (a) series of lines with different spacing. (b) and (c) series of horizontal and vertical interconnected lines.

Metrics