Abstract

For fiber optical sensor made of tapered fiber tip, the effects of the geometrical parameters of tapered tip on two important factors have been investigated. One factor is the intensity of the evanescent wave into fluorescent layer through core-medium interface; the other is the intensity of fluorescence signal transmitted from fluorescent layer to measurement end. A dependence relation of the intensity of fluorescence signal transmitted from fluorescent layer to measurement end upon the geometrical parameters of tapered tip has been obtained. Theoretical results show that the intensity of the evanescent wave into fluorescent layer rises with the decrease of the end diameter of tapered tip, and the increase of the tip length; and the transmitted power of fluorescence signal increases linearly with the increase of the tip length due to the contribution of the side area of tapered tip.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
    [CrossRef]
  2. C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem. 146(1), 190–194 (2010).
    [CrossRef]
  3. T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
    [CrossRef] [PubMed]
  4. P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
    [CrossRef]
  5. K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
    [PubMed]
  6. A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
    [CrossRef] [PubMed]
  7. W. M. Henry, “An investigation of coated tapered optical fibres,” Sens. Actuators B Chem. 22(2), 101–107 (1994).
    [CrossRef]
  8. N. K. Chen, K. C. Hsu, S. K. Liaw, Y. Lai, and S. Chi, “Influence of depressed-index outer ring on evanescent tunneling loss in tapered double-cladding fibers,” Opt. Lett. 33(15), 1666–1668 (2008).
    [CrossRef] [PubMed]
  9. S. Y. Chou, K. C. Hsu, N. K. Chen, S. K. Liaw, Y. S. Chih, Y. Lai, and S. Chi, “Analysis of thermo-optic tunable dispersion-engineered short-wavelength-pass tapered-fiber filters,” J. Lightwave Technol. 27(13), 2208–2215 (2009).
    [CrossRef]
  10. C. L. Lee, K. H. Lin, and N. K. Chen, “Analysis of optical properties of fundamental-mode in waveguide tapered fibers,” Microelectron. Reliab. 50(5), 726–729 (2010).
    [CrossRef]
  11. R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [CrossRef]
  12. N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
    [CrossRef] [PubMed]
  13. B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
    [CrossRef] [PubMed]
  14. L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
    [CrossRef] [PubMed]
  15. L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
    [CrossRef] [PubMed]
  16. G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
    [CrossRef]
  17. A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B Chem. 100(3), 423–431 (2004).
    [CrossRef]

2010

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem. 146(1), 190–194 (2010).
[CrossRef]

C. L. Lee, K. H. Lin, and N. K. Chen, “Analysis of optical properties of fundamental-mode in waveguide tapered fibers,” Microelectron. Reliab. 50(5), 726–729 (2010).
[CrossRef]

2009

2008

N. K. Chen, K. C. Hsu, S. K. Liaw, Y. Lai, and S. Chi, “Influence of depressed-index outer ring on evanescent tunneling loss in tapered double-cladding fibers,” Opt. Lett. 33(15), 1666–1668 (2008).
[CrossRef] [PubMed]

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[CrossRef]

2007

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

2006

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

2005

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

2004

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B Chem. 100(3), 423–431 (2004).
[CrossRef]

2003

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

2000

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

1997

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
[CrossRef] [PubMed]

1994

W. M. Henry, “An investigation of coated tapered optical fibres,” Sens. Actuators B Chem. 22(2), 101–107 (1994).
[CrossRef]

1993

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Anand, S.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
[CrossRef] [PubMed]

Anderson, G. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Battaglia, T. M.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Beaudoin, S. P.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Booksh, K. S.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Caldas, P.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Chen, N. K.

Chi, S.

Chih, Y. S.

Chou, S. Y.

Cullum, B. M.

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

Esteban, Ó.

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem. 146(1), 190–194 (2010).
[CrossRef]

Farahi, F.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Foster, K. N.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Golden, J. P.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Griffin, G. D.

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

Gupta, B. D.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B Chem. 100(3), 423–431 (2004).
[CrossRef]

Henry, W. M.

W. M. Henry, “An investigation of coated tapered optical fibres,” Sens. Actuators B Chem. 22(2), 101–107 (1994).
[CrossRef]

Holloway, G. A.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Hong, B.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

Hsu, K. C.

Jain, S. R.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
[CrossRef] [PubMed]

Jian, C.

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

Jorge, P. A. S.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Kang, K. A.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

Lai, Y.

Lee, C. L.

C. L. Lee, K. H. Lin, and N. K. Chen, “Analysis of optical properties of fundamental-mode in waveguide tapered fibers,” Microelectron. Reliab. 50(5), 726–729 (2010).
[CrossRef]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

Liaw, S. K.

Ligler, F. S.

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

Lin, K. H.

C. L. Lee, K. H. Lin, and N. K. Chen, “Analysis of optical properties of fundamental-mode in waveguide tapered fibers,” Microelectron. Reliab. 50(5), 726–729 (2010).
[CrossRef]

Masson, J. F.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Miller, G. H.

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

Nath, N.

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
[CrossRef] [PubMed]

Oliva, A. G.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Pulido, C.

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem. 146(1), 190–194 (2010).
[CrossRef]

Ren, Y. J.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

Rijal, K.

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

Rogers, J.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Rosa, C. C.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Santos, J. L.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B Chem. 100(3), 423–431 (2004).
[CrossRef]

Sierks, M. R.

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Silva, J. C. G. E. D.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

Tang, L.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[CrossRef]

Vo-Dinh, T.

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

Wen-xu, L.

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

Anal. Biochem.

B. M. Cullum, G. D. Griffin, G. H. Miller, and T. Vo-Dinh, “Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors,” Anal. Biochem. 277(1), 25–32 (2000).
[CrossRef] [PubMed]

Anal. Chem.

L. Wen-xu and C. Jian, “Continuous monitoring of adriamycin in vivo using fiber optic-based fluorescence chemical sensor,” Anal. Chem. 75(6), 1458–1462 (2003).
[CrossRef] [PubMed]

T. M. Battaglia, J. F. Masson, M. R. Sierks, S. P. Beaudoin, J. Rogers, K. N. Foster, G. A. Holloway, and K. S. Booksh, “Quantification of cytokines involved in wound healing using surface plasmon resonance,” Anal. Chem. 77(21), 7016–7023 (2005).
[CrossRef] [PubMed]

Biosens. Bioelectron.

K. Rijal, A. Leung, P. M. Shankar, and R. Mutharasan, “Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors,” Biosens. Bioelectron. 21(6), 871–880 (2005).
[PubMed]

A. Leung, K. Rijal, P. M. Shankar, and R. Mutharasan, “Effects of geometry on transmission and sensing potential of tapered fiber sensors,” Biosens. Bioelectron. 21(12), 2202–2209 (2006).
[CrossRef] [PubMed]

G. P. Anderson, J. P. Golden, and F. S. Ligler, “A fiber optic biosensor–combination tapered fibers designed for improved signal acquisition,” Biosens. Bioelectron. 8(5), 249–256 (1993).
[CrossRef]

N. Nath, S. R. Jain, and S. Anand, “Evanescent wave fibre optic sensor for detection of L. donovani specific antibodies in sera of kala azar patients,” Biosens. Bioelectron. 12(6), 491–498 (1997).
[CrossRef] [PubMed]

Fiber Integr. Opt.

P. A. S. Jorge, P. Caldas, J. C. G. E. D. Silva, C. C. Rosa, A. G. Oliva, J. L. Santos, and F. Farahi, “Luminiscence-based optical fiber chemical sensors,” Fiber Integr. Opt. 24(3), 201–225 (2005).
[CrossRef]

J. Biomed. Opt.

L. Tang, Y. J. Ren, B. Hong, and K. A. Kang, “Fluorophore-mediated, fiber-optic, multi-analyte, immunosensing system for rapid diagnosis and prognosis of cardiovascular diseases,” J. Biomed. Opt. 11(2), 021011 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol.

Microelectron. Reliab.

C. L. Lee, K. H. Lin, and N. K. Chen, “Analysis of optical properties of fundamental-mode in waveguide tapered fibers,” Microelectron. Reliab. 50(5), 726–729 (2010).
[CrossRef]

Opt. Commun.

R. K. Verma, A. K. Sharma, and B. D. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[CrossRef]

Opt. Lett.

Sens. Actuators B Chem.

A. K. Sharma and B. D. Gupta, “Absorption-based fiber optic surface plasmon resonance sensor: a theoretical evaluation,” Sens. Actuators B Chem. 100(3), 423–431 (2004).
[CrossRef]

W. M. Henry, “An investigation of coated tapered optical fibres,” Sens. Actuators B Chem. 22(2), 101–107 (1994).
[CrossRef]

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sens. Actuators B Chem. 125(2), 688–703 (2007).
[CrossRef]

C. Pulido and Ó. Esteban, “Improved fluorescence signal with tapered polymer optical fibers under side-illumination,” Sens. Actuators B Chem. 146(1), 190–194 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Tapered fiber tip.

Fig. 2
Fig. 2

Transmission spectra of tapered fiber tip sensors with (a) different absorption maximum wavelengths, (b) different concentrations of absorption oscillators, and (c) different background dielectric constants. The units are: dsen (nm), λmax (nm), C(mol/L).

Fig. 3
Fig. 3

Transmission spectra (a) and maximum intensity of evanescent wave (b) of tapered fiber tip sensors with different diameters of tip end. The unit of dt is μm.

Fig. 4
Fig. 4

Transmission spectra (a) and maximum intensity of evanescent wave (b) of tapered fiber tip sensors with different tip lengths. The unit of dt is μm.

Fig. 5
Fig. 5

Integration factor versus (a) diameter of tip end and (b) taper angle.

Fig. 6
Fig. 6

Transmitted power of fluorescence signal versus diameter of tip end and tip length.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

ω 0 = 2πc λ max 2 ,
γ=|Δ ω 0 |=2πc Δ λ max λ max 2 ,
N= 10 3 N A C,
r(z)= a 1 z L ( a 1 a t ).
ϕ 1 (z)= cos 1 a 1 cos θ cr r(z) Ω,
ϕ 2 (z)= π 2 Ω,
P trans = 0 L dz ϕ 1 (z) ϕ 2 (z) R p N ref (θ,z) P(θ)dθ 0 L dz ϕ 1 (z) ϕ 2 (z) P(θ)dθ ,
P(θ)= n 1 2 sinθcosθ (1 n 1 2 cos 2 θ) 2 ,
N ref (θ,z)= L 2ρ(z)tan(θ+Ω) .
θ fcr = sin 1 n 1 n sen .
θ f1 = sin 1 [ n 1 n sen sin( θ cr Ω)],
θ f2 = sin 1 [ n 1 n sen cosΩ].
P flu =πL d 1 + d t 2 1+ ( d 1 d t 2L ) 2 K θ f1 θ f2 T f ( θ fi ) d θ fi ,
P flu Kπ d 1 2 /4 =(1+ d t d 1 ) 2L d 1 1+ ( d 1 d t 2L ) 2 θ f1 θ f2 T f ( θ fi ) d θ fi ,
E s2 E s1 = 2 n sen cos θ fi n sen cos θ fi + n 1 cos θ ft ,
E p2 E p1 = 2 n sen cos θ fi n 1 cos θ fi + n sen cos θ ft ,
T s ( θ fi )= n 1 cos θ ft n sen cos θ fi | E s2 E s1 | 2 =| 4 n sen n 1 cos θ fi cos θ ft ( n sen cos θ fi + n 1 cos θ ft ) 2 |,
T p ( θ fi )= n 1 cos θ ft n sen cos θ fi | E p2 E p1 | 2 =| 4 n sen n 1 cos θ fi cos θ ft ( n 1 cos θ fi + n sen cos θ ft ) 2 |.
T f ( θ fi )= T s ( θ fi )+ T p ( θ fi ) 2 .
θ f1 θ f2 T f ( θ fi ) d θ fi =0.0090+0.220tanΩ  as L/ d 1 5,
ΩtanΩ= d 1 d t 2L  as L/ d 1 5,
P flu Kπ d 1 2 /4 = 1+ ( d 1 d t 2L ) 2 { f 1 ( n 1 , n sen )(1+ d t d 1 ) L d 1 + f 2 ( n 1 , n sen )(1 d t 2 d 1 2 ) } as  L d 1 5.
P flu Kπ d 1 2 /4 = 1+ ( d 1 2L ) 2 (0.220+0.0180 L d 1 ).

Metrics