Abstract

A measurement technique capable of recording three-dimensional laser induced images with a spatial resolution of 610x512x20 voxels over a volume of 29x24x15 mm3 and at a frame rate of 1 kHz is presented. A novel approach for sweeping the illuminating laser sheet across the investigated volume is introduced as a key feature. The technique is applied to imaging nebulized water droplets with a nitrogen-jet central feature.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
    [CrossRef]
  2. K. Kohse-Höinghaus and J. B. Jefferies, Applied Combustion Diagnostics (Taylor & Francis, 2002).
  3. B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
    [CrossRef] [PubMed]
  4. B. Yip, R. L. Schmitt, and M. B. Long, “Instantaneous three-dimensional concentration measurements in turbulent jets and flames,” Opt. Lett. 13(2), 96–98 (1988).
    [CrossRef] [PubMed]
  5. G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flow fields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
    [CrossRef] [PubMed]
  6. J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
    [CrossRef]
  7. J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
    [CrossRef]
  8. J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).
  9. B. S. Thurow, “Recent progress towards a high-speed three-dimensional flow visualization technique,” in 22nd International Congress on Instrumentation in Aerospace Simulation (Institute of Electrical and Electronics Engineers, Pacific Grove, 2007), pp. 178–184.
  10. B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47(12), 2857–2865 (2009).
    [CrossRef]
  11. B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt. 48(11), 2086–2093 (2009).
    [CrossRef] [PubMed]
  12. E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).
  13. V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).
  14. B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
    [CrossRef]
  15. J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31(1), 747–755 (2007).
    [CrossRef]

2010

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
[CrossRef]

V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).

2009

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47(12), 2857–2865 (2009).
[CrossRef]

B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt. 48(11), 2086–2093 (2009).
[CrossRef] [PubMed]

2007

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31(1), 747–755 (2007).
[CrossRef]

2006

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

2004

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

2002

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

1988

1987

G. Kychakoff, P. H. Paul, I. van Cruyningen, and R. K. Hanson, “Movies and 3-D images of flow fields using planar laser-induced fluorescence,” Appl. Opt. 26(13), 2498–2500 (1987).
[CrossRef] [PubMed]

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

Aldén, M.

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Augé, M.

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

Axelsson, B.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Benktsson, P.-E.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Böhm, B.

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

Boxx, I.

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

Christensen, M.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

Collin, R.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Derksen, J. J.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

Dreizler, A.

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

Duma, V.-F.

V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).

Hanson, R. K.

Heeger, C.

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

Hult, J.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Hultqvist, A.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

Jiang, N.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
[CrossRef]

Johansson, B.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

Kaminski, C. F.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Kychakoff, G.

Lam, J. K.

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

Lempert, W. R.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
[CrossRef]

Long, M. B.

B. Yip, R. L. Schmitt, and M. B. Long, “Instantaneous three-dimensional concentration measurements in turbulent jets and flames,” Opt. Lett. 13(2), 96–98 (1988).
[CrossRef] [PubMed]

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

Lynch, K.

Lynch, K. P.

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47(12), 2857–2865 (2009).
[CrossRef]

Meier, W.

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

Nishihara, M.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
[CrossRef]

Nygren, J.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Olofsson, J.

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

Omrane, A.

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

Paul, P. H.

Podoleanu, A. G.

V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).

Portela, L. M.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

Richter, M.

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

Rolland, J. P.

V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).

Satija, A.

Schmitt, R. L.

Sick, V.

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31(1), 747–755 (2007).
[CrossRef]

Smith, J. D.

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31(1), 747–755 (2007).
[CrossRef]

Thurow, B. S.

B. S. Thurow, A. Satija, and K. Lynch, “Third-generation megahertz-rate pulse burst laser system,” Appl. Opt. 48(11), 2086–2093 (2009).
[CrossRef] [PubMed]

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47(12), 2857–2865 (2009).
[CrossRef]

Van Bergen, S. M.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

van Cruyningen, I.

Van den Akker, H. E. A.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

Van Vliet, E.

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

Winter, M.

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

Yip, B.

B. Yip, R. L. Schmitt, and M. B. Long, “Instantaneous three-dimensional concentration measurements in turbulent jets and flames,” Opt. Lett. 13(2), 96–98 (1988).
[CrossRef] [PubMed]

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

AIAA J.

B. S. Thurow and K. P. Lynch, “Development of a high-speed three-dimensional flow visualization technique,” AIAA J. 47(12), 2857–2865 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Jiang, M. Nishihara, and W. R. Lempert, “Quantitative NO2 molecular tagging velocimetry at 500 kHz rate,” Appl. Phys. Lett. 97(22), 211103 (2010).
[CrossRef]

Exp. Fluids

J. Hult, A. Omrane, J. Nygren, C. F. Kaminski, B. Axelsson, R. Collin, P.-E. Benktsson, and M. Aldén, “Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames,” Exp. Fluids 33, 265–269 (2002).

E. Van Vliet, S. M. Van Bergen, J. J. Derksen, L. M. Portela, and H. E. A. Van den Akker, “Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a turbulent reactor,” Exp. Fluids 37, 1–21 (2004).

Opt. Lett.

Proc. Combust. Inst.

J. Nygren, J. Hult, M. Richter, M. Aldén, M. Christensen, A. Hultqvist, and B. Johansson, “Three-dimensional laser induced fluorescence of fuel distributions in an HCCI engine,” Proc. Combust. Inst. 29(1), 679–685 (2002).
[CrossRef]

B. Böhm, C. Heeger, I. Boxx, W. Meier, and A. Dreizler, “Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF,” Proc. Combust. Inst. 32(2), 1647–1654 (2009).
[CrossRef]

J. D. Smith and V. Sick, “Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane,” Proc. Combust. Inst. 31(1), 747–755 (2007).
[CrossRef]

Proc. SPIE

V.-F. Duma, J. P. Rolland, and A. G. Podoleanu, “Perspectives of optical scanning in OCT,” Proc. SPIE 75560B, 1–12 (2010).

Rev. Sci. Instrum.

J. Olofsson, M. Richter, M. Aldén, and M. Augé, “Development of high temporally and spatially (three-dimensional) resolved formaldehyde measurements in combustion environments,” Rev. Sci. Instrum. 77(1), 013104 (2006).
[CrossRef]

Science

B. Yip, J. K. Lam, M. Winter, and M. B. Long, “Time-resolved three-dimensional concentration measurements in a gas jet,” Science 235(4793), 1209–1211 (1987).
[CrossRef] [PubMed]

Other

K. Kohse-Höinghaus and J. B. Jefferies, Applied Combustion Diagnostics (Taylor & Francis, 2002).

B. S. Thurow, “Recent progress towards a high-speed three-dimensional flow visualization technique,” in 22nd International Congress on Instrumentation in Aerospace Simulation (Institute of Electrical and Electronics Engineers, Pacific Grove, 2007), pp. 178–184.

Supplementary Material (2)

» Media 1: MOV (4070 KB)     
» Media 2: MOV (13746 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup seen from above. All lenses (L1-L5) are cylindrical lenses except L6 which is spherical. L:s focal length (f), Mirror (M), Oscillating Mirror (OM), Glass Plate (GP), Dye Cuvette (DC).

Fig. 2
Fig. 2

Schematic drawing of a 4f-setup. The wave front exiting the first (left) oscillating mirror is identical to the wave front at the second oscillating mirror. There is no magnification in this 4f-setup, i.e. f1 = f2.

Fig. 3
Fig. 3

(a) Example of a sine wave, a triangle wave and the sum of the sine wave and −10% of its first odd overtone. The measured depth position of the laser sheet is also plotted. In (b) the measured positions of the laser sheet is plotted together with the positions as it would be for a sine wave and a pure triangle wave.

Fig. 4
Fig. 4

(a) - (q) 17 of the 20 images used to create one 3D image covering approximately half of the spray. The droplet free part of the spray seen in images (l) – (r) is created by a stream of nitrogen gas entering the flow at the nebulizer nozzle. The three omitted images show no signal, as the laser sheet was outside the flow region. (r) The resulting 3D image.

Fig. 5
Fig. 5

From the 3D image sequence (Media 1 and Media 2), four images (a)-(c) have been selected. Although consecutive images are not identical, two images between each image pair, (a)-(b) (b)-(c) and (c)-(d) has been discarded. This results in a time separation of 3 ms which better visualizes the dynamical processes of the flow. The two dimensional images are plotted at the corresponding position of the laser sheet with transparency proportional to their intensity values. A semi transparent surface helps to judge the boundaries of the nebulizer flow. All values are given in mm. Approximately half of the spray is scanned and the droplet free nitrogen flow can be seen as a pillar in the center of the spray. The spray propagates in the upward direction with the lowest part just above the nozzle tip.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = 8 π 2 n = 0 ( 1 ) n sin ( ( 2 n + 1 ) ω t ) ( 2 n + 1 ) 2 .

Metrics