Abstract

To achieve a nearly zero-delay operating point in a polarization-maintaining (PM) fiber Sagnac interferometer, two identical PM fibers were incorporated so that their two main axes were orthogonally coupled to each other. A simple fiber vibration sensor system was constructed with a light emitting diode and a balanced PM fiber Sagnac interferometer, in which one of the PM fibers was used as a sensing cable and the other as a reference cable. The vibration sensor was confirmed to be temperature-compensated and generated a phase shift per unit length and unit strain of the sensor of 4.7 milliradian / (m·μɛ) when mechanical vibrations with 1 kHz sinusoidal and triangular waves were stably observed under an input power of 10 μW.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
    [CrossRef]
  2. Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
    [CrossRef]
  3. S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
    [CrossRef]
  4. A. M. Yurek, A. B. Tveten, and A. Dandridge, “High performance fiber optic hydrophones in the Arctic environment,” in Int’l Conf. on Optical Fiber Sensors (IREE, Dec.1990, Sydney) pp. 321–324.
    [PubMed]
  5. R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
    [CrossRef]
  6. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
    [CrossRef]
  7. X. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  8. J. P. Dakin and C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
    [CrossRef]
  9. J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
    [CrossRef]

2010

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

2009

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

2008

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

2007

X. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

2000

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

1997

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

1993

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

1984

J. P. Dakin and C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Chang, J.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Dakin, J. P.

J. P. Dakin and C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Dandridge, A.

A. M. Yurek, A. B. Tveten, and A. Dandridge, “High performance fiber optic hydrophones in the Arctic environment,” in Int’l Conf. on Optical Fiber Sensors (IREE, Dec.1990, Sydney) pp. 321–324.
[PubMed]

De La Rosa, E.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

Dobashi, K.

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Dong, X.

X. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Grattan, K. T. V.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

Huo, D. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Ishii, H.

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Kamata, H.

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Liu, D.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Liu, H.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Liu, T. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Liu, X. H.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

Saito, A.

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Sato, R.

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Somatomo, H.

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

Sun, Q.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Sun, T.

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

Takahashi, N.

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

Tam, H. Y.

X. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tanaka, S.

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

Tveten, A. B.

A. M. Yurek, A. B. Tveten, and A. Dandridge, “High performance fiber optic hydrophones in the Arctic environment,” in Int’l Conf. on Optical Fiber Sensors (IREE, Dec.1990, Sydney) pp. 321–324.
[PubMed]

Wada, A.

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

Wade, C. A.

J. P. Dakin and C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Wang, C.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Wang, J.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Wang, J. Y.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Yurek, A. M.

A. M. Yurek, A. B. Tveten, and A. Dandridge, “High performance fiber optic hydrophones in the Arctic environment,” in Int’l Conf. on Optical Fiber Sensors (IREE, Dec.1990, Sydney) pp. 321–324.
[PubMed]

Zenteno, L. A.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

Appl. Phys. Lett.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. De La Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett. 70, 19–21 (1997).
[CrossRef]

X. Dong and H. Y. Tam, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Electron. Lett.

J. P. Dakin and C. A. Wade, “Compensated polarimetric sensor using polarization-maintaining fibre in a differential configuration,” Electron. Lett. 20, 51–53 (1984).
[CrossRef]

Jpn. J. Appl. Phys.

S. Tanaka, H. Somatomo, A. Wada, and N. Takahashi, “Fiber-optic mechanical vibration sensor using long-period fiber grating,” Jpn. J. Appl. Phys. 48, 07GE05 (2009).
[CrossRef]

R. Sato, H. Ishii, K. Dobashi, H. Kamata, and A. Saito, “Pressure balancing structure for fiber-optic flexural disk acoustic sensor,” Jpn. J. Appl. Phys. 32, 2473–2476 (1993).
[CrossRef]

Meas. Sci. Technol.

J. Y. Wang, T. Y. Liu, C. Wang, X. H. Liu, D. H. Huo, and J. Chang, “A micro-seismic fiber Bragg grating (FBG) sensor system based on a distributed feedback laser,” Meas. Sci. Technol. 21, 094012 (2010).
[CrossRef]

Opt. Commun.

Q. Sun, D. Liu, J. Wang, and H. Liu, “Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer,” Opt. Commun. 281, 1538–1544 (2008).
[CrossRef]

Sens. Actuators

K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: an overview,” Sens. Actuators 82, 40–61 (2000).
[CrossRef]

Other

A. M. Yurek, A. B. Tveten, and A. Dandridge, “High performance fiber optic hydrophones in the Arctic environment,” in Int’l Conf. on Optical Fiber Sensors (IREE, Dec.1990, Sydney) pp. 321–324.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A conventional PM fiber Sagnac interferometer temperature sensor system.

Fig. 2
Fig. 2

The power spectrum of the LED output.

Fig. 3
Fig. 3

Output power spectra from the PM fiber Sagnac interferometer observed at sensor temperatures of (a) 15.5 deg C, (b) 18.5 deg C, and (c) 22.0 deg C, respectively. Parts of these results are superimposed in the magnified view (d).

Fig. 4
Fig. 4

The proposed balanced PM fiber Sagnac interferometer vibration sensor system.

Fig. 5
Fig. 5

Output power spectrum from the balanced PM fiber Sagnac interferometer.

Fig. 6
Fig. 6

Output power spectra from the proposed system in Fig. 4 observed when the temperature of PMF1 was varied from 15.5 deg C to 22.0 deg C, while maintaining the temperature of PMF2 at 27 deg C.

Fig. 7
Fig. 7

Variation in the output power from the proposed system in Fig. 4 as a function of temperature. Filled squares indicate the case where only PMF1 was subjected to temperature variation, and open squares indicate the case where both PMF1 and PMF2 were subjected to temperature variation.

Fig. 8
Fig. 8

Experimental configuration for vibration sensing.

Fig. 9
Fig. 9

Examples of observed vibration waveforms when (a) sinusoidal and (b) triangular voltage waveforms with amplitudes of 5 V, 10 V, and 15 V at 1 kHz repetition rate were applied to the cylindrical piezoelectric body of the sensor system in Fig. 8.

Fig. 10
Fig. 10

Sinusoidal vibration waveforms observed when only PMF1 is subjected to a temperature variation from 15.5 deg C to 18.5 deg C. An ac voltage of ±10 V at 1 kHz repetition rate was applied to the cylindrical piezoelectric body.

Metrics