Abstract

We demonstrate upconversion-assisted single-photon detection for the 1.55-μm telecommunications band based on a periodically poled lithium niobate (PPLN) waveguide pumped by a monolithic PPLN optical parametric oscillator. We achieve an internal conversion efficiency of 86%, which results in an overall system detection efficiency of 37%, with excess noise as low as 103 counts s−1. We measure the dark count rate versus the upconversion pump-signal frequency separation and find the results to be consistent with noise photon generation by spontaneous anti-Stokes Raman scattering. These results enable detailed design guidelines for the development of low-noise quantum frequency conversion systems, which will be an important component of fiber-optic quantum networks.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011).
    [CrossRef] [PubMed]
  2. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [CrossRef]
  3. R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
    [CrossRef]
  4. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [CrossRef]
  5. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
    [CrossRef]
  6. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt. 51, 1433–1445 (2004)
  7. P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
    [CrossRef] [PubMed]
  8. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [CrossRef] [PubMed]
  9. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 ?m by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [CrossRef] [PubMed]
  10. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
    [CrossRef]
  11. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [CrossRef] [PubMed]
  12. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [CrossRef]
  13. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
    [CrossRef] [PubMed]
  14. L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express 19, 10501–10510 (2011).
    [CrossRef] [PubMed]
  15. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett. 36, 864–866 (2011).
    [CrossRef] [PubMed]
  16. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
    [CrossRef] [PubMed]
  17. M. Malyj and J. E. Griffiths, “Stokes/Anti-Stokes Raman vibrational temperatures: reference materials, standard lamps, and spectrophotometric calibrations,” Appl. Spectrosc. 37, 315–333 (1983).
    [CrossRef]
  18. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825–12836 (2011).
    [CrossRef] [PubMed]
  19. H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
    [CrossRef]
  20. H. Kamada, M. Asobe, T. Hongo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
    [CrossRef] [PubMed]
  21. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
    [CrossRef]
  22. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
    [CrossRef]
  23. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [CrossRef]
  24. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phasematched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011).
    [CrossRef] [PubMed]
  25. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and T. Yamamoto, “1.5-?m single photon counting using polarization-independent up-conversion detector,” Opt. Express 14, 13067–13072 (2006).
    [CrossRef] [PubMed]
  26. A Single Photon Counting Module Datasheet, SPCM-QR Series (PerkinElmer, 2004), pp. 1–10.
  27. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  28. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  29. M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
    [CrossRef]
  30. Shibin Jiang, private communication (2011).
  31. R. Loudon, “The Raman effect in crystals,” Adv. Phys. 50, 813–864 (2001).
    [CrossRef]
  32. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, 1984).
  33. L. Ma, Jo. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express 19, 5470–5479 (2011).
    [CrossRef] [PubMed]

2011 (6)

2010 (2)

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

2009 (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[CrossRef]

2008 (5)

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
[CrossRef] [PubMed]

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

H. Kamada, M. Asobe, T. Hongo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (3)

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[CrossRef] [PubMed]

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

2004 (1)

2001 (2)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 50, 813–864 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

1998 (1)

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

1997 (1)

1990 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

1983 (1)

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Becher, C.

Bienfang, Jo. C.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Buller, G. S.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[CrossRef]

Cabrera, B.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Chang, D.

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Clarke, R. M.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Colling, P.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Diamanti, E.

Dong, H.

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Drozhzhin, A.

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Fejer, M. M.

Gapontsev, D.

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Gisin, N.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Griffiths, J. E.

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Hongo, T.

Honjo, T.

Inoue, S.

Itzler, M.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[CrossRef]

Jundt, D. H.

Kamada, H.

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

Kumar, P.

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[CrossRef]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt. 51, 1433–1445 (2004)

Langrock, C.

Lenhard, A.

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Loudon, R.

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 50, 813–864 (2001).
[CrossRef]

Ma, L.

Malyj, M.

Meleshkevich, M.

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Miller, A. J.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Miyazawa, H.

Nam, S.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Namekata, N.

Nishida, Y.

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

Pan, H.

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Pelc, J. S.

Phillips, C. R.

Platonov, N.

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Rakher, M. T.

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express 19, 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Romani, R. W.

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

Roussev, R. V.

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, 1984).

Slattery, O.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Srinivasan, K.

L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express 19, 10501–10510 (2011).
[CrossRef] [PubMed]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Starodubov, D.

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Stevens, M. J.

Tadanaga, O.

Takesue, H.

Tang, X.

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Tokura, Y.

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B 24, 295–299 (2007).
[CrossRef]

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt. 51, 1433–1445 (2004)

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Warburton, R. E.

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wong, F. N. C.

Wu, E.

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Yamamoto, T.

Yamamoto, Y.

Yao, L.

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Zaske, S.

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Zeng, H.

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Zhang, Q.

Adv. Phys. (1)

R. Loudon, “The Raman effect in crystals,” Adv. Phys. 50, 813–864 (2001).
[CrossRef]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (4)

R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett. 94, 071116 (2009).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998).
[CrossRef]

H. Dong, H. Pan, L. Yao, E. Wu, and H. Zeng, “Efficient single-photon frequency upconversion at 1.06 ?m with ultralow background counts,” Appl. Phys. Lett. 93, 071101 (2008).
[CrossRef]

Appl. Spectrosc. (1)

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt. 51, 1433–1445 (2004)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Nature (1)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[CrossRef] [PubMed]

Nature (London) (1)

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (8)

H. Kamada, M. Asobe, T. Hongo, H. Takesue, Y. Tokura, Y. Nishida, O. Tadanaga, and H. Miyazawa, “Efficient and low-noise single-photon detection in 1550 nm communication band by frequency upconversion in periodically poled LiNbO3 waveguides,” Opt. Lett. 33, 639–641 (2008).
[CrossRef] [PubMed]

J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett. 36, 864–866 (2011).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

P. Kumar, “Quantum frequency conversion,” Opt. Lett. 15, 1476–1478 (1990).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
[CrossRef] [PubMed]

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 ?m by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[CrossRef] [PubMed]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phasematched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (1)

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett. 101, 173901 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Meleshkevich, A. Drozhzhin, N. Platonov, D. Gapontsev, and D. Starodubov, “10 W single-mode single-frequency Tm-doped fiber amplifiers optimized for 1800–2020-nm band,” Proc. SPIE 5709, 117–124 (2005).
[CrossRef]

Other (4)

Shibin Jiang, private communication (2011).

Y. R. Shen, The Principles of Nonlinear Optics, (Wiley-Interscience, 1984).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

A Single Photon Counting Module Datasheet, SPCM-QR Series (PerkinElmer, 2004), pp. 1–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of noise processes in (a) short-wavelength-pumped and (b) long-wavelength-pumped upconversion single-photon detectors.

Fig. 2
Fig. 2

Experimental setup for the long-wavelength-pumped upconversion detector. Abbreviations: LPF, long-pass filter; PC, polarization controller; WDM, wavelength division multiplexer; DM, dichroic mirror; PR, prism; BPF, band-pass filter; PH, pinhole.

Fig. 3
Fig. 3

(a) Phasematching tuning curve for a 52-mm-long PPLN waveguide, λp = 1800 nm; (b) Temperature tuning data (squares) and fit to LiNbO3 dispersion [27], showing 0.27 nm/°C tuning rate.

Fig. 4
Fig. 4

(a) Experimentally observed and (b) numerically predicted conversion efficiency versus pump power and signal wavelength. Simulation parameters: α1 (α2) = 0.17 (0.1) dB cm−1, and Pmax = 151 mW; (c) internal conversion efficiency of PPLN waveguide (λ1 = 1554 nm, λ2 = 834 nm).

Fig. 5
Fig. 5

TmDFA noise spectrum between 1450 and 1580 nm, measured by an optical spectrum analyzer with a resolution bandwidth of 2 nm, showing the TmDFA pump line at 1567 nm and shelf of spontaneous emission down to approximately 1470 nm.

Fig. 6
Fig. 6

Left axes: measured photon detection efficiency with λp = 1810 nm (circles) and fit to Eq. (1); right axes: measured noise count rate (squares) and polynomial fit (dashed).

Fig. 7
Fig. 7

(a) Measured Raman spectrum of LiNbO3 (blue dots) and fit to a sum of Lorentzians (green solid); (b) Tuning of upconversion waveguide: phasematched signal wavelength λ1 versus pump wavelength λp; (c) Measured NCR at peak PDE versus signal-pump frequency difference Δω and, equivalently, pump wavelength needed for upconversion of λ1 = 1550 nm, with theoretical fit to anti-Stokes SRS noise photon generation.

Fig. 8
Fig. 8

Noise equivalent power (NEP) of a 1.55 μm upconversion detector pumped between 1.2 and 2.1 μm, based on Perkin-Elmer SPCM and operated at temperatures between −50 and 100° C.

Tables (1)

Tables Icon

Table 1 Loss and transmission of upconversion detector components. The column with feasible transmission values is based on idealized optical components and improved waveguides with pigtailing losses of 0.5 dB and propagation losses of 0.1 dB cm−1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = N 2 ( z = L ) N 1 ( z = 0 ) = sin 2 ( η nor P p L )
η nor = ɛ 0 2 d eff 2 | θ Q | 2 2 ω 1 ω 2 Z 0 3 n p n 1 n 2 ,
θ Q = d ¯ ( x , y ) u 1 ( x , y ) u p ( x , y ) u 2 * ( x , y ) dxdy .
R aS R S = ( ω b ω a ) 3 exp [ h ¯ Δ ω kT ] .
N 1 = 8 π 2 3 c 2 n p ω 1 3 h ¯ ω p n 1 2 ( ρ e h ¯ Δ ω / k T g L ( Δ ω ) d σ d Ω | 0 ) θ R P p L δ ω ,
θ R = | u 1 ( x , y ) | 2 | u p ( x , y ) | 2 dxdy .
NEP = h c λ PDE 2 NCR .

Metrics