Abstract

The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
  3. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, ““Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004).
  4. T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
  5. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).
  6. E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).
  8. R. Di Leonardo, “F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).
  9. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons Inc., 2009).
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).
  11. A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).
  12. A. van der Horst, B. P. B. Downing, and N. R. Forde, “Position and intensity modulations in holographic optical traps created by a liquid crystal spatial light modulator,” in Optical Trapping Applications, Vol. 1 of 2009 OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMB3.
  13. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
  14. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).
  15. L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).
  16. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
  17. S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).
  18. A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).
  19. J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).
  20. A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).
  21. E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15(26), 18268–18274 (2007).
  22. M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18(11), 11250–11263 (2010).
  23. D. J. McKnight, “Continuous view of dc-balanced images on a ferroelectric liquid-crystal spatial light modulator,” Opt. Lett. 19(18), 1471–1473 (1994).
  24. A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).
  25. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711–16722 (2008).
  26. F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).
  27. Hamamatsu Photonics K. K., LCOS-SLM X10468 series -LC driving system- 2010
  28. K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).
  29. S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).
  30. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).
  31. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).
  32. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett. 29(22), 2611–2613 (2004).
  33. Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).
  34. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

2011 (1)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

2010 (7)

T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).

M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18(11), 11250–11263 (2010).

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).

2009 (1)

2008 (4)

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711–16722 (2008).

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

2007 (4)

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15(26), 18268–18274 (2007).

Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

R. Di Leonardo, “F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).

2006 (2)

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

2005 (1)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

2004 (3)

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).

1999 (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999).

1998 (2)

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

1994 (1)

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Andilla, J.

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Backsten, J.

Bechhoefer, J.

Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).

Bedoya, M. D.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Bengtsson, J.

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

Bernet, S.

Blab, G. A.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Blümel, T.

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

Campos, J.

Carroll, K. M.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

Cižmár, T.

T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).

Collings, N.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Crossland, W. A.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Curtis, J. E.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).

Davey, A. B.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Deng, Y.

Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).

Dholakia, K.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).

Downing, B. P. B.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

Dufresne, E. R.

C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).

Engström, D.

Eriksson, E.

Evans, M.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Farré, A.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Fernández, E.

Florin, E.-L.

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

Flyvbjerg, H.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

Forde, N. R.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).

Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).

Forscher, P.

Frank, A.

Fürhapter, S.

Goksör, M.

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).

Haist, T.

Hara, T.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Harriman, J.

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

Hermerschmidt, A.

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

Howard, J.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

Iemmi, C.

Igasaki, Y.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Inoue, T.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

Jesacher, A.

Jeziorska, A. M.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Jülicher, F.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

Keen, S.

Kobayashi, Y.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Komarcevic, M.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).

Kramer, A.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Krüger, S.

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Leach, J.

Li, F.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Lizana, A.

Lobato, L.

López-Quesada, C.

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Márquez, A.

Martín-Badosa, E.

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Mazilu, M.

T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).

McKnight, D. J.

McLane, L. T.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Mejean, C. O.

Millman, E. A.

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

Montes-Usategui, M.

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Moore, J. R.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Moreno, I.

Mukohzaka, N.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

Nugent-Glandorf, L.

Oddershede, L.

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

Osten, S.

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

Padgett, M. J.

Parker, R. J.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Pavone, F. S.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

Perkins, T. T.

Persson, M.

Reicherter, M.

Ritsch-Marte, M.

Rodange, Y.

Schaefer, A. W.

Schäffer, E.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

Scrimgeour, J.

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Serati, S.

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

Tiziani, H. J.

Tolic-No?rrelykke, S. F.

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

Toyoda, H.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

van der Horst, A.

Wagemann, E. U.

Wilkinson, T. D.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Xu, H.

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

Yoshida, N.

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Yzuel, M. J.

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).

IEEE Photon. Technol. Lett. (1)

J. R. Moore, N. Collings, W. A. Crossland, A. B. Davey, M. Evans, A. M. Jeziorska, M. Komarcevic, R. J. Parker, T. D. Wilkinson, and H. Xu, “The silicon backplane design for an LCOS polarization-insensitive phase hologram SLM,” IEEE Photon. Technol. Lett. 20(1), 60–62 (2008).

J. Appl. Phys. (1)

K. Berg-Sørensen, L. Oddershede, E.-L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93(6), 3167–3176 (2003).

J. Biophotonics (1)

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3(4), 224–233 (2010).

J. Opt. A, Pure Appl. Opt. (1)

Y. Deng, J. Bechhoefer, and N. R. Forde, “Brownian motion in a modulated optical trap,” J. Opt. A, Pure Appl. Opt. 9(8), S256–S263 (2007).

Nat. Photonics (2)

T. ?ižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011).

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438(7067), 460–465 (2005).

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002).

Opt. Eng. (1)

A. Farré, C. López-Quesada, J. Andilla, E. Martín-Badosa, and M. Montes-Usategui, “Holographic optical manipulation of motor-driven membranous structures in living NG-108 cells,” Opt. Eng. 49(8), 085801 (2010).

Opt. Express (9)

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, ““Size selective trapping with optical “cogwheel” tweezers,” Opt. Express 12(17), 4129–4135 (2004).

R. Di Leonardo, “F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15(4), 1913–1922 (2007).

E. Eriksson, S. Keen, J. Leach, M. Goksör, and M. J. Padgett, “The effect of external forces on discrete motion within holographic optical tweezers,” Opt. Express 15(26), 18268–18274 (2007).

I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16(21), 16711–16722 (2008).

A. van der Horst and N. R. Forde, “Calibration of dynamic holographic optical tweezers for force measurements on biomaterials,” Opt. Express 16(25), 20987–21003 (2008).

C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).

A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18(8), 7670–7677 (2010).

A. Lizana, A. Márquez, L. Lobato, Y. Rodange, I. Moreno, C. Iemmi, and J. Campos, “The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators,” Opt. Express 18(10), 10581–10593 (2010).

M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express 18(11), 11250–11263 (2010).

Opt. Lett. (3)

Opt. Rev. (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6(1), 24–27 (1999).

F. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T. Hara, “Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display,” Opt. Rev. 5(3), 174–178 (1998).

Proc. SPIE (3)

S. Serati and J. Harriman, “Spatial light modulator considerations for beam control in optical manipulation applications,” Proc. SPIE 6326(63262W), 63262W (2006).

A. Hermerschmidt, S. Osten, S. Krüger, and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584(65840E), 65840E (2007).

L. T. McLane, K. M. Carroll, J. Scrimgeour, M. D. Bedoya, A. Kramer, and J. E. Curtis, “Force measurements with a translating holographic optical trap,” Proc. SPIE 7762(77621J), 77621J (2010).

Rev. Sci. Instrum. (3)

E. R. Dufresne and D. G. Grier, “Optical tweezer array and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998).

S. F. Toli?-No?rrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77(10), 103101 (2006).

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).

Other (3)

Hamamatsu Photonics K. K., LCOS-SLM X10468 series -LC driving system- 2010

A. van der Horst, B. P. B. Downing, and N. R. Forde, “Position and intensity modulations in holographic optical traps created by a liquid crystal spatial light modulator,” in Optical Trapping Applications, Vol. 1 of 2009 OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMB3.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons Inc., 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Setup for phase measurements. Two polarizers at 45° and −45° with respect to the LC alignment direction are inserted before and after the SLM, respectively, and the intensity as read by the photodetector provides information on the phase fluctuations.

Fig. 2
Fig. 2

Left column: phase variation as a function of time for (a) the analog-addressed SLM, (b) the 5-5 setting of the digitally-addressed SLM and (c) the 0-6 setting of the digitally-addressed SLM. In each plot, different curves correspond to different gray levels: 0 (bottom), 32, 64, 96, 128, 160, 192, 224 and 255 (top). Missing data points are due to the fact that Eq. (1) is fit to mean intensity values; therefore, measured intensities greater than (Ioffset + I0) or less than Ioffset (resulting from phase delays of π and 2π, respectively) cannot be converted to phase delays. Right column: for each SLM setting, a power spectrum of the trace with the largest phase modulation shows the frequency dependence of I(ϕ) modulation.

Fig. 3
Fig. 3

(a) Phase modulations of equal amplitude that are synchronous will not change the phase gradient, maintaining the spatial frequency of the kinoform. In contrast, phase modulations that are asynchronous and/or (b) differ in amplitude can alter the phase gradient. In this schematic example, temporal variation of the angle α leads to a modulation of the trap position d, where f’ is the objective’s focal length and m is the magnification of the telescope used to image the SLM onto the objective’s entrance pupil.

Fig. 4
Fig. 4

Left column: power spectra of trapped bead position for different digitally-addressed SLM settings: (a) 5-5 and (b) 0-6. The SLM peak appears at f0 = 300 Hz and f0 = 600 Hz, respectively (red arrows). The peak at 742 Hz is caused by a fan in the high-speed camera. Right column: the amplitude of the oscillation obtained from the peak height is plotted for traps with different corner frequencies. The fit of Eq. (3) to the experimental results gives the trap motion, x0.

Fig. 5
Fig. 5

Power spectra of a 2µm trapped bead determined using a high-speed camera for (a) high and (b) low laser powers, under the simultaneous action of two oscillations: the laser phase fluctuation and a piezostage movement. The peak at 100 Hz is parasitic electronic noise from the room illumination. (c) The amplitude of the piezostage oscillation obtained from the 30 Hz peak from camera data is plotted against the trap roll-off frequency determined from BFPI. The red line is a fit using Eq. (5).

Fig. 6
Fig. 6

Determination of the default gamma curve for the Holoeye SLM in the 0-6 addressing scheme. (a) Mean intensity measured for different constant gray levels (red circles) and sine squared theoretical curve from Eq. (1) (black line) after determination of I0 and Ioffset from the experimental data. The divergence between these curves shows that gray level and phase delay are not linearly related in this default setting. (b) The default gamma curve, extracted from part (a), gives a nonlinear relation between phase and gray level, not the desired outcome.

Fig. 7
Fig. 7

(a). In order to change the old phase values (filled red circles, left axis) to the desired phase values (red line, left axis), the default LUT value assigned to each gray level (open black circles, right axis) needs to be changed. The filled black squares (right axis) correspond to the new LUT values after adjustment. (b). Resulting phase vs. gray level plot for 0-6, demonstrating the correct linear relation between these two parameters. Note, however, that this setting does not provide a full 2π phase modulation for 1064 nm light.

Tables (1)

Tables Icon

Table 1 Experimental results for holographic trap position instability along the less stable axis, for the different addressing schemes used here.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I( ϕ )= I offset + I 0 sin 2 ( ϕ 2 ).
P= D π 2 f 2 + f c 2 + x bead 2 2 δ( f f 0 ),
x bead = x 0 1+ f 0 2 f c 2 .
x bead = 2( P Peak P therm )·Δf ,
x bead = T· x piezo 1+ ( f c f piezo ) 2 ,
ϕ=2 sin 1 I I offset I 0 .
m x ¨ (t)+γ x ˙ (t)+k( x(t) x trap (t) )=0,
γ x ˙ (t)+kx(t)=k x trap (t).
x(t)= x bead sin( 2π f 0 t+ϕ )= x 0 1+ f 0 2 f c 2 sin( 2π f 0 tarctan( f 0 f c ) ).
x ˜ (f)= x bead e iϕ δ(f+ f 0 )δ(f f 0 ) 2i ,
P(f)= 2 | x ˜ (f) | 2 T msr = x bead 2 2 δ(f f 0 ).
A=( P peak P therm )Δf= x bead 2 2 .

Metrics