Abstract

The polarization of a coherent depolarized incident light beam passing through a scattering medium is investigated at the speckle scale. The polarization of the scattered far field at each direction and the probability density function of the degree of polarization are calculated and show an excellent agreement with experimental data. It is demonstrated that complex media may confer high degree of local polarization (0.75 DOP average) to the incident unpolarized light.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, 2006).
  2. C. Brosseau, Fundamentals of Polarized Light—A Statistical Approach (Wiley, 1998).
  3. R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun. 123(4-6), 443–448 (1996).
    [CrossRef]
  4. E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (C. Cambridge University Press, 1995).
  5. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11(5), 1641–1643 (1994).
    [CrossRef]
  6. E. Wolf, “Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation,” Opt. Lett. 28(13), 1078–1080 (2003).
    [CrossRef] [PubMed]
  7. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004).
    [CrossRef]
  8. X. Y. Du and D. M. Zhao, “Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere,” Opt. Express 17(6), 4257–4262 (2009).
    [CrossRef] [PubMed]
  9. M. Mujat and A. Dogariu, “Polarimetric and spectral changes in random electromagnetic fields,” Opt. Lett. 28(22), 2153–2155 (2003).
    [CrossRef] [PubMed]
  10. C. Amra, M. Zerrad, L. Siozade, G. Georges, and C. Deumié, “Partial polarization of light induced by random defects at surfaces or bulks,” Opt. Express 16(14), 10372–10383 (2008).
    [CrossRef] [PubMed]
  11. L. H. Jin, M. Kasahara, B. Gelloz, and K. Takizawa, “Polarization properties of scattered light from macrorough surfaces,” Opt. Lett. 35(4), 595–597 (2010).
    [CrossRef] [PubMed]
  12. S. M. F. Nee and T. W. Nee, “Polarization of transmission scattering simulated by using a multiple-facets model,” J. Opt. Soc. Am. A 21(9), 1635–1644 (2004).
    [CrossRef] [PubMed]
  13. J. Sorrentini, M. Zerrad, and C. Amra, “Statistical signatures of random media and their correlation to polarization properties,” Opt. Lett. 34(16), 2429–2431 (2009).
    [CrossRef] [PubMed]
  14. M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, “Gradual loss of polarization in light scattered from rough surfaces: electromagnetic prediction,” Opt. Express 18(15), 15832–15843 (2010).
    [CrossRef] [PubMed]
  15. I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104(22), 223904 (2010).
    [CrossRef] [PubMed]
  16. D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
    [CrossRef] [PubMed]
  17. B. J. DeBoo, J. M. Sasian, and R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44(26), 5434–5445 (2005).
    [CrossRef] [PubMed]
  18. T. W. Nee, S. M. F. Nee, D. M. Yang, and A. Chiou, “Optical scattering depolarization in a biomedium with anisotropic biomolecules,” J. Opt. Soc. Am. A 26(5), 1101–1108 (2009).
    [CrossRef] [PubMed]
  19. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21(9), 1799–1804 (2004).
    [CrossRef] [PubMed]
  20. A. C. Maggs and V. Rossetto, “Writhing photons and Berry phases in polarized multiple scattering,” Phys. Rev. Lett. 87(25), 253901 (2001).
    [CrossRef] [PubMed]
  21. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18(19), 20105–20113 (2010).
    [CrossRef] [PubMed]
  22. J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).
  23. C. Amra, “First-order vector theory of bulk scattering in optical multilayers,” J. Opt. Soc. Am. A 10(2), 365–374 (1993).
    [CrossRef]
  24. L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, “An enhanced contrast to detect bulk objects under arbitrary rough surfaces,” Opt. Express 17(7), 5758–5773 (2009).
    [CrossRef] [PubMed]
  25. D. Colton and R. Kress, Integral Equations in Scattering Theory (Elsevier, 1983).
  26. C. Macaskill and B. J. Kachoyan, “Iterative approach for the numerical simulation of scattering from one- and two-dimensional rough surfaces,” Appl. Opt. 32(15), 2839–2847 (1993).
    [CrossRef] [PubMed]
  27. G. Soriano and M. Saillard, “Scattering of electromagnetic waves from two-dimensional rough surfaces with an impedance approximation,” J. Opt. Soc. Am. A 18(1), 124–133 (2001).
    [CrossRef] [PubMed]
  28. K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11(1), 1–30 (2001).
    [CrossRef]
  29. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  30. C. Amra, C. Grèzes-Besset, and L. Bruel, “Comparison of surface and bulk scattering in optical multilayers,” Appl. Opt. 32(28), 5492–5503 (1993).
    [CrossRef] [PubMed]

2010 (4)

2009 (4)

2008 (1)

2005 (1)

2004 (3)

2003 (2)

2001 (3)

A. C. Maggs and V. Rossetto, “Writhing photons and Berry phases in polarized multiple scattering,” Phys. Rev. Lett. 87(25), 253901 (2001).
[CrossRef] [PubMed]

G. Soriano and M. Saillard, “Scattering of electromagnetic waves from two-dimensional rough surfaces with an impedance approximation,” J. Opt. Soc. Am. A 18(1), 124–133 (2001).
[CrossRef] [PubMed]

K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11(1), 1–30 (2001).
[CrossRef]

1996 (1)

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun. 123(4-6), 443–448 (1996).
[CrossRef]

1994 (2)

D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11(5), 1641–1643 (1994).
[CrossRef]

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

1993 (3)

Amra, C.

Arnaud, L.

Barakat, R.

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun. 123(4-6), 443–448 (1996).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Broky, J.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Bruel, L.

Chew, W. C.

K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11(1), 1–30 (2001).
[CrossRef]

Chiou, A.

Chipman, R. A.

DeBoo, B. J.

Deumié, C.

Dogariu, A.

Du, X. Y.

Gelloz, B.

Georges, G.

Grèzes-Besset, C.

James, D. F. V.

Jin, L. H.

Kachoyan, B. J.

Kasahara, M.

Korotkova, O.

O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004).
[CrossRef]

Lacoste, D.

Lenke, R.

Leskova, T. A.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104(22), 223904 (2010).
[CrossRef] [PubMed]

Macaskill, C.

Maggs, A. C.

A. C. Maggs and V. Rossetto, “Writhing photons and Berry phases in polarized multiple scattering,” Phys. Rev. Lett. 87(25), 253901 (2001).
[CrossRef] [PubMed]

Maradudin, A. A.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104(22), 223904 (2010).
[CrossRef] [PubMed]

Martinez, A. S.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Mujat, M.

Nee, S. M. F.

Nee, T. W.

Rojas-Ochoa, L. F.

Rossetto, V.

A. C. Maggs and V. Rossetto, “Writhing photons and Berry phases in polarized multiple scattering,” Phys. Rev. Lett. 87(25), 253901 (2001).
[CrossRef] [PubMed]

Saillard, M.

Salem, M.

O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004).
[CrossRef]

Sasian, J. M.

Scheffold, F.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Schurtenberger, P.

Simonsen, I.

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104(22), 223904 (2010).
[CrossRef] [PubMed]

Siozade, L.

Soriano, G.

Sorrentini, J.

Takizawa, K.

Warnick, K. F.

K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11(1), 1–30 (2001).
[CrossRef]

Wolf, E.

O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004).
[CrossRef]

E. Wolf, “Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation,” Opt. Lett. 28(13), 1078–1080 (2003).
[CrossRef] [PubMed]

Yang, D. M.

Zerrad, M.

Zhao, D. M.

Appl. Opt. (3)

J. Opt. Soc. Am. A (6)

Opt. Commun. (2)

O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence,” Opt. Commun. 233(4-6), 225–230 (2004).
[CrossRef]

R. Barakat, “Polarization entropy transfer and relative polarization entropy,” Opt. Commun. 123(4-6), 443–448 (1996).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. Bicout, C. Brosseau, A. S. Martinez, and J. M. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: Influence of the size parameter,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(2), 1767–1770 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

I. Simonsen, A. A. Maradudin, and T. A. Leskova, “Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces,” Phys. Rev. Lett. 104(22), 223904 (2010).
[CrossRef] [PubMed]

A. C. Maggs and V. Rossetto, “Writhing photons and Berry phases in polarized multiple scattering,” Phys. Rev. Lett. 87(25), 253901 (2001).
[CrossRef] [PubMed]

Waves Random Media (1)

K. F. Warnick and W. C. Chew, “Numerical simulation methods for rough surface scattering,” Waves Random Media 11(1), 1–30 (2001).
[CrossRef]

Other (6)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

J. W. Goodman, Statistical Optics (Wiley-Interscience, 2000).

D. Colton and R. Kress, Integral Equations in Scattering Theory (Elsevier, 1983).

E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (C. Cambridge University Press, 1995).

E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, 2006).

C. Brosseau, Fundamentals of Polarized Light—A Statistical Approach (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic view of the experiment.

Fig. 2
Fig. 2

(a-b): Calculation (left figure- a) of the local DOP in the far field with a random phasor matrix. The resulting dop average is 0.75. Lg is the mean speckle size. Probability density function (right figure- b) of the local degree of polarization.

Fig. 3
Fig. 3

(a) Measurement of the local dop in the far field. The resulting average is 0.75 Probability density function (right figure- b) of the local degree of polarization.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E(r,t)= I(r) ( e s (t) e p (t) )
μ= e s (t) e p (t) ¯ | e s (t) | 2 | e P (t) | 2 = e s (t) e p (t) ¯ =0
<| e S ( t ) | 2 > = <| e P ( t ) | 2 >= 1
E sc =( ν ss e s (t)+ ν ps e p (t) ν sp e s (t)+ ν pp e p (t) )=( E S SC E P SC )
do p sc = 14β( 1 | μ sc | 2 )/ ( 1+β ) 2
β= | ν SS e S ( t )+ ν PS e P ( t ) | 2 | ν SP e S ( t )+ ν PP e P ( t ) | 2 = | E S SC | 2 | E P SC | 2
μ sc = ( ν SS e S ( t )+ ν PS e P ( t ) ) ( ν SP e S ( t )+ ν PP e P ( t ) ) ¯ | ν SS e S ( t )+ ν PS e P ( t ) | 2 | ν SP e S ( t )+ ν PP e P ( t ) | 2 = E S SC . E P SC ¯ | E S SC | 2 | E P SC | 2
β= | ν SS | 2 + | ν PS | 2 | ν SP | 2 + | ν PP | 2
μ sc = ν ss ν ¯ sp + ν ps ν ¯ pp ( | ν ss | 2 + | ν ps | 2 )( | ν sp | 2 + | ν pp | 2 )
0 1 up(u) du=3/4
v ss v pp = v sp v ps
μ=0DOP=| 1β |/| 1+β |

Metrics