Abstract

Cardiac and respiratory motions in animals are the primary source of image quality degradation in dynamic imaging studies, especially when using phase-resolved imaging modalities such as spectral-domain optical coherence tomography (SD-OCT), whose phase signal is very sensitive to movements of the sample. This study demonstrates a method with which to compensate for motion artifacts in dynamic SD-OCT imaging of the rodent cerebral cortex. We observed that respiratory and cardiac motions mainly caused, respectively, bulk image shifts (BISs) and global phase fluctuations (GPFs). A cross-correlation maximization-based shift correction algorithm was effective in suppressing BISs, while GPFs were significantly reduced by removing axial and lateral global phase variations. In addition, a non-origin-centered GPF correction algorithm was examined. Several combinations of these algorithms were tested to find an optimized approach that improved image stability from 0.5 to 0.8 in terms of the cross-correlation over 4 s of dynamic imaging, and reduced phase noise by two orders of magnitude in ~8% voxels.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  4. C. Joo, C. L. Evans, T. Stepinac, T. Hasan, and J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18(3), 2858–2871 (2010).
    [CrossRef] [PubMed]
  5. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
    [CrossRef] [PubMed]
  6. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
    [CrossRef] [PubMed]
  7. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
    [CrossRef] [PubMed]
  8. M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
    [CrossRef] [PubMed]
  9. O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
    [CrossRef] [PubMed]
  10. A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
    [CrossRef] [PubMed]
  11. V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
    [CrossRef] [PubMed]
  12. S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
    [CrossRef] [PubMed]
  13. S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
    [CrossRef] [PubMed]
  14. G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
    [CrossRef] [PubMed]
  15. S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
    [CrossRef] [PubMed]
  16. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
    [CrossRef] [PubMed]
  17. J. Y. Ha, M. Shishkov, M. Colice, W. Y. Oh, H. Yoo, L. Liu, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 18(11), 11418–11427 (2010).
    [CrossRef] [PubMed]
  18. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt. 49(9), 1480–1488 (2010).
    [CrossRef] [PubMed]
  19. M. C. Pierce, B. Hyle Park, B. Cense, and J. F. de Boer, “Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,” Opt. Lett. 27(17), 1534–1536 (2002).
    [CrossRef] [PubMed]

2010

2009

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

2008

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

2007

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[CrossRef] [PubMed]

2006

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
[CrossRef] [PubMed]

2005

G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
[CrossRef] [PubMed]

2003

2002

1997

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

S. Yazdanfar, M. Kulkarni, and J. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Akkin, T.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[CrossRef] [PubMed]

Ashitate, Y.

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

Barry, S.

Boas, D. A.

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett. 35(1), 43–45 (2010).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Brzezinski, M.

Cable, A. E.

Cense, B.

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Colice, M.

Daube-Witherspoon, M. E.

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

Dawant, B. M.

G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
[CrossRef] [PubMed]

de Boer, J. F.

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Dold, C.

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

Dubois, A.

Eidsath, A.

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

Evans, C. L.

Fercher, A.

Frangioni, J. V.

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Fulton, R.

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

Fulton, R. R.

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

Georges, P.

Gioux, S.

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

Goldstein, S. R.

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

Götzinger, E.

Green, M. V.

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

Ha, J. Y.

Hasan, T.

Hennig, J.

O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
[CrossRef] [PubMed]

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Hutteman, M.

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

Hyle Park, B.

Izatt, J.

Jiang, J. Y.

Joo, C.

C. Joo, C. L. Evans, T. Stepinac, T. Hasan, and J. F. de Boer, “Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering,” Opt. Express 18(3), 2858–2871 (2010).
[CrossRef] [PubMed]

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[CrossRef] [PubMed]

Kulkarni, M.

Kyme, A. Z.

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Lin, S. F.

G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
[CrossRef] [PubMed]

Liu, L.

Meikle, S. R.

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

Moreau, J.

Oh, W. Y.

Park, B. H.

Pierce, M. C.

Pircher, M.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Radhakrishnan, H.

Rohde, G. K.

G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
[CrossRef] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

Sacchet, D.

Sakas, G.

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

Sattmann, H.

Shishkov, M.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Speck, O.

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stepinac, T.

Tearney, G. J.

Wu, W.

Yaseen, M. A.

Yazdanfar, S.

Yoo, H.

Zaitsev, M.

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
[CrossRef] [PubMed]

Zhou, V. W.

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

G. K. Rohde, B. M. Dawant, and S. F. Lin, “Correction of motion artifact in cardiac optical mapping using image registration,” IEEE Trans. Biomed. Eng. 52(2), 338–341 (2005).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

S. R. Goldstein, M. E. Daube-Witherspoon, M. V. Green, and A. Eidsath, “A head motion measurement system suitable for emission computed tomography,” IEEE Trans. Med. Imaging 16(1), 17–27 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt.

S. Gioux, Y. Ashitate, M. Hutteman, and J. V. Frangioni, “Motion-gated acquisition for in vivo optical imaging,” J. Biomed. Opt. 14(6), 064038–064038 (2009).
[CrossRef] [PubMed]

J. Neurosci. Methods

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods 178(1), 162–173 (2009).
[CrossRef] [PubMed]

MAGMA

O. Speck, J. Hennig, and M. Zaitsev, “Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects,” MAGMA 19(2), 55–61 (2006).
[CrossRef] [PubMed]

Mol. Imaging Biol.

V. W. Zhou, A. Z. Kyme, S. R. Meikle, and R. Fulton, “An event-driven motion correction method for neurological PET studies of awake laboratory animals,” Mol. Imaging Biol. 10(6), 315–324 (2008).
[CrossRef] [PubMed]

Neuroimage

M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system,” Neuroimage 31(3), 1038–1050 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. Z. Kyme, V. W. Zhou, S. R. Meikle, and R. R. Fulton, “Real-time 3D motion tracking for small animal brain PET,” Phys. Med. Biol. 53(10), 2651–2666 (2008).
[CrossRef] [PubMed]

Science

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(A) Schematics of the SD-OCT system for in vivo brain imaging. (B) Image of the surface of the rodent cerebral cortex obtained by the CCD. The white scale bar indicates 1 mm. The red line indicates the scanning line of OCT imaging. (C) The intensity map of OCT shows a depth-resolved tissue structure of the cross-sectional area indicated by the red line in (B). The intensity map was averaged over 1000 frames (4 s). (D) The noise map from dynamic OCT imaging. This noise map looks very similar to the intensity map because the phase fluctuation exceeded 2π.

Fig. 2
Fig. 2

Motion artifacts in dynamic OCT imaging. (A) The magnitude and absolute real part of the cross-correlation. Filled arrows indicate low-frequency decorrelation due to respiratory motions, while empty arrows indicate high-frequency decorrelation due to cardiac motions. (B) Example voxels showing axial and lateral global fluctuations in the phase of OCT signals. Axial global phase fluctuations were observed across voxels a-d, while lateral global fluctuations were observed across voxels a and e-g. Large phase increases due to respiratory motions (filled arrows) were observed across voxels located at the identical depth (voxels a, e, f, and g). Phases were unwrapped in the temporal direction.

Fig. 3
Fig. 3

Effects of BIS correction. (A) Sub-pixel axial and lateral shifts of the image obtained by maximizing the cross-correlation magnitude. Shifts were presented in pixels. (B) The cross-correlation of BIS-corrected images. Amplitudes of respiration-oriented dips (filled arrows) were reduced to be similar to those of cardiac motion-oriented dips. The gray line shows the cross-correlation of raw data. (C) Normalized population of the noise reduction ratio.

Fig. 4
Fig. 4

Effect of GPF correction. (A) Examples of axial and lateral global phase fluctuations found from axial and lateral data centered at the voxel a in Fig. 2B. (B) The cross-correlation of GPF-corrected images. Amplitudes of cardiac motion-oriented dips were remarkably reduced (empty arrows), whereas large respiratory motion-oriented dips remained (filled arrows). The gray line shows the cross-correlation of raw data. (C) Normalized population of the noise reduction ratio.

Fig. 5
Fig. 5

(A) An example of a non-origin center of rotation. Color dots display data points for complex-valued OCT signals for the first 400 ms (100 time points). The black circle indicates the center of rotation obtained by Eq. (7). (B) Normalized voxel population of the magnitude of the center of rotation. Nine percent of the voxels showed non-origin CORs whose magnitude was larger than 5% of the mean signal magnitude.

Fig. 6
Fig. 6

Performance of various combinations. (A) Cross-correlations of images for each combination. (B) The mean cross-correlation of the later two seconds. (C) Noise maps where each combination was applied. C5 was particularly effective in reducing noise at the surface (black circles), resulting in its higher cross-correlation than the other combinations. (D) The effect of C5 on fluctuations in the phase of the OCT signal from the voxels a-g in Fig. 2B.

Fig. 7
Fig. 7

Performance of various combinations across animals. (A) The magnitude of cross-correlations in the data from four other animals. (B) The mean cross-correlation of the later two seconds across five animals. The error bar indicates the standard deviation of the mean cross-correlation across animals.

Fig. 8
Fig. 8

Effect of motion correction on the intensity map, noise map and angiogram. (A) The combination C5 in Table 1 was used for motion-corrected data. The brightness range for each map was automatically adjusted to the range from the mean of the lowest 1% to the mean of the highest 1%. (B) We also applied the C5 to 3D angiogram data. The maximum intensity projection of the 3D angiogram is shown as an en face image. Ten volumetric angiograms were averaged. A 10x objective was used for this angiogram.

Tables (1)

Tables Icon

Table 1 Combinations of BIS and GPF corrections.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Γ(t)= R(z,x,t) R * (z,x, t 0 )dzdx | R(z,x,t) | 2 dzdx | R(z,x, t 0 ) | 2 dzdx
Γ shift (Δz,Δx,t)= | R(z+Δz,x+Δx,t) R * (z,x, t 0 )dzdx | | R(z+Δz,x+Δx,t) | 2 dzdx | R(z,x, t 0 ) | 2 dzdx
Re[ Γ phase (x,t;AGPF(x,t)) ]= Re[ R(z,x,t) e iAGPF(x,t) R * (z,x, t 0 )dz ] | R(z,x,t) | 2 dz | R(z,x, t 0 ) | 2 dz
AGPF(x,t)=arg[ R(z,x,t) R * (z,x, t 0 )dz ]
LGPF(z,t)=arg[ R(z,x,t) R * (z,x, t 0 )dx ]
σ D 2 = D j 2 D ¯ 2 = 1 N [ (A a j ) 2 + (B b j ) 2 ] 2 [ 1 N { (A a j ) 2 + (B b j ) 2 } ] 2
[ σ a 2 ( a j a ¯ ) b j ( b j b ¯ ) a j σ b 2 ][ A B ]= 1 2 [ a j 3 a ¯ a j 2 + ( a j a ¯ ) b j 2 b j 3 b ¯ b j 2 + ( b j b ¯ ) a j 2 ]
R(z+Δz,x+Δx,t)= F 1 [ R ˜ ( k z , k x ,t) e i k z (zΔz)+i k x (xΔx) ]
A(z,x)= | d dt R(z,x,t) | 2 t

Metrics