Abstract

We fabricated a microstructured optical fiber with a dispersion profile that, according to calculations, is near-zero and flat, with 3 zero dispersion wavelengths in the mid-IR. To the best of our knowledge this is the first report of the fabrication of such a fiber. Simulations of multimode supercontinuum generation were performed using a simplified approach. Strong agreement between experiments and simulations were observed using this approach.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  3. L. J. Lu and A. Safaai-Jazi, “Analysis and design of multi-clad single mode fibers with three zero-dispersion wavelengths,” in Proc. IEEE Southeastcon 1989, 12B5 (1989).
  4. A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001).
    [CrossRef] [PubMed]
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef] [PubMed]
  6. R. Mehra and P. K. Inaniya, “Design of photonic crystal fiber for ultra low dispersion in wide wavelength range with three zero dispersion wavelengths,” AIP Conference Proceedings1324, 175–177 (2010).
    [CrossRef]
  7. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
    [CrossRef] [PubMed]
  8. W. Q. Zhang, S. Afshar V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
    [CrossRef]
  9. J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
    [CrossRef]
  10. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [CrossRef]
  11. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
    [CrossRef] [PubMed]
  12. R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, and W. S. Brocklesby, “Modal effects on pump-pulse propagation in an ar-filled capillary,” Opt. Express 18, 13279–13284 (2010).
    [CrossRef] [PubMed]
  13. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
    [CrossRef] [PubMed]
  14. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
    [CrossRef]
  15. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
    [CrossRef] [PubMed]
  16. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  17. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
    [CrossRef] [PubMed]
  18. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [CrossRef]
  19. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
    [CrossRef] [PubMed]
  20. T. X. Tran and F. Biancalana, “An accurate envelope equation for lightpropagation in photonic nanowires: newnonlinear effects,” Opt. Express 17, 17934–17949 (2009).
    [CrossRef] [PubMed]

2010

2009

2008

2007

2006

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2004

2003

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef] [PubMed]

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

2001

1990

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1972

Afshar V., S.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Andres, M.

Andres, P.

Asimakis, S.

Baggett, J.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Baumberg, J.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Beausoleil, R. G.

Belardi, W.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Biancalana, F.

Brocklesby, W. S.

Butcher, T. J.

Chapman, R. T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Coyle, S.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Ferrando, A.

Finazzi, V.

Frampton, K.

Frey, J. G.

Furusawa, K.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Hagan, D.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Hasegawa, T.

Horak, P.

Inaniya, P. K.

R. Mehra and P. K. Inaniya, “Design of photonic crystal fiber for ultra low dispersion in wide wavelength range with three zero dispersion wavelengths,” AIP Conference Proceedings1324, 175–177 (2010).
[CrossRef]

Koizumi, F.

Koshiba, M.

Lu, L. J.

L. J. Lu and A. Safaai-Jazi, “Analysis and design of multi-clad single mode fibers with three zero-dispersion wavelengths,” in Proc. IEEE Southeastcon 1989, 12B5 (1989).

Mehra, R.

R. Mehra and P. K. Inaniya, “Design of photonic crystal fiber for ultra low dispersion in wide wavelength range with three zero dispersion wavelengths,” AIP Conference Proceedings1324, 175–177 (2010).
[CrossRef]

Miret, J.

Monro, T.

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[CrossRef] [PubMed]

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Monro, T. M.

Moore, R.

Netti, C.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Paschotta, R.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Petropoulos, P.

Poletti, F.

Price, J.

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Richardson, D.

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[CrossRef] [PubMed]

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

Safaai-Jazi, A.

L. J. Lu and A. Safaai-Jazi, “Analysis and design of multi-clad single mode fibers with three zero-dispersion wavelengths,” in Proc. IEEE Southeastcon 1989, 12B5 (1989).

Said, A.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saitoh, K.

Sasaoka, E.

Sheik-Bahae, M.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Silvestre, E.

Snyder, A. W.

Tran, T. X.

Van Stryland, E.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Wei, T.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Willner, A. E.

Yue, Y.

Zhang, L.

Zhang, W. Q.

Annu. Rev. Mater. Res.

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res. 36, 467–495 (2006).
[CrossRef]

Appl. Phys. B

J. Price, T. Monro, K. Furusawa, W. Belardi, J. Baggett, S. Coyle, C. Netti, J. Baumberg, R. Paschotta, and D. Richardson, “UV generation in a pure-silica holey fiber,” Appl. Phys. B 77, 291–298 (2003).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Opt. Express

S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part i: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express 17, 6134–6147 (2009).
[CrossRef] [PubMed]

T. X. Tran and F. Biancalana, “An accurate envelope equation for lightpropagation in photonic nanowires: newnonlinear effects,” Opt. Express 17, 17934–17949 (2009).
[CrossRef] [PubMed]

W. Q. Zhang, S. Afshar V., and T. M. Monro, “A genetic algorithm based approach to fiber design for high coherence and large bandwidth supercontinuum generation,” Opt. Express 17, 19311–19327 (2009).
[CrossRef]

R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, and W. S. Brocklesby, “Modal effects on pump-pulse propagation in an ar-filled capillary,” Opt. Express 18, 13279–13284 (2010).
[CrossRef] [PubMed]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Flattened dispersion in silicon slot waveguides,” Opt. Express 18, 20529–20534 (2010).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, P. Andres, J. Miret, and M. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687–697 (2001).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12, 5082–5087 (2004).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

L. J. Lu and A. Safaai-Jazi, “Analysis and design of multi-clad single mode fibers with three zero-dispersion wavelengths,” in Proc. IEEE Southeastcon 1989, 12B5 (1989).

R. Mehra and P. K. Inaniya, “Design of photonic crystal fiber for ultra low dispersion in wide wavelength range with three zero dispersion wavelengths,” AIP Conference Proceedings1324, 175–177 (2010).
[CrossRef]

G. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Designed fiber structure, core diameter 6.4 μm, inner ring diameter 3.3 μm, inner hole diameter 0.40 and 0.32 μm.

Fig. 2
Fig. 2

Fiber preform and SEM image. Bismuth glass from Asahi Glass Co.

Fig. 3
Fig. 3

Nonlinearity and dispersion profiles of the fundamental modes of the ideal bismuth fiber.

Fig. 4
Fig. 4

Nonlinearity and dispersion profiles of the fiber modes. The thick sold lines correspond to fundamental modes, dashed lines correspond to the six first high order modes, dotted lines correspond to eight further higher order modes.

Fig. 5
Fig. 5

(a) Coupling efficiencies for different modes vs. beam diameter of the incident Gaussian beam. (b) Average coupling efficiencies over input beam diameters from 2 to 16 μm.

Fig. 6
Fig. 6

Simulations of SC generation in 2 cm of fiber pumped with 100-fs 10-kW peak power hyperbolic secant pulses with an overall coupling efficiency of 25%. Spectra are normalized to their peak level and offset vertically for easier viewing. (a) Spectra of multimode pulse propagation simulation pumped at 1300 (blue), 1550 (green), 1650 (red) and 1800 (cyan) nm with 100-fs 10-k peak power pulses, (b) SC spectra of the fundamental mode for the same range of pump wavelengths.

Fig. 7
Fig. 7

Measured spectra overlaid on the simulation results. Thick blue curves represent measured data and thin red curve represent simulation results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η n = | E i n E n * d a | 2 | E in | 2 | E n | 2 da

Metrics