Abstract

We observed that when subwavelength-sized holes in an optically opaque metal film are completely covered by opaque metal disks larger than the holes, the light transmission through the holes is not reduced, but rather enhanced. Particularly we report (i) the observation of light transmission through the holes blocked by the metal disks up to 70% larger than the unblocked holes; (ii) the observation of tuning the light transmission by varying the coupling strength between the blocking disks and the hole array, or by changing the size of the disks and holes; (iii) the observation and simulation that the metal disk blocker can improve light coupling from free space to a subwavelength hole; and (iv) the simulation that shows the light transmission through subwavelength holes can be enhanced, even though the gap between the disk and the metal film is partially connected with a metal. We believe these finding should have broad and significant impacts and applications to optical systems in many fields.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. C. Hauser and S. S. S. Tan, “All-solid-state instrument for fluorescence-based fiberoptic chemical sensors,” Analyst (Lond.) 118(8), 991–995 (1993).
    [CrossRef]
  2. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
    [CrossRef] [PubMed]
  3. C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol. A 21(5), S207–S215 (2003).
    [CrossRef]
  4. T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
    [CrossRef] [PubMed]
  5. G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
    [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  7. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [CrossRef] [PubMed]
  8. N. Bonod, S. Enoch, L. F. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
    [CrossRef] [PubMed]
  9. S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
    [CrossRef]
  10. K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73(3), 033401 (2006).
    [CrossRef]
  11. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009).
    [CrossRef] [PubMed]
  12. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
    [CrossRef] [PubMed]
  13. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [CrossRef] [PubMed]
  14. W. D. Li, J. Hu, and S. Y. Chou, “Nanoantenna enhanced transmission through blocked metallic subwavelength holes,” presented at Nanometa, The 3rd International Topical Meeting on Nanophotonics and Metamaterials, Tirol, Austria, Jan. 3–6, 2011.
  15. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  16. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
    [CrossRef]
  17. W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
    [CrossRef]
  18. S. Y. Chou and Q. F. Xia, “Improved nanofabrication through guided transient liquefaction,” Nat. Nanotechnol. 3(5), 295–300 (2008).
    [CrossRef] [PubMed]
  19. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
    [CrossRef] [PubMed]
  20. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [CrossRef]
  21. Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
    [CrossRef] [PubMed]
  22. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  23. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
    [CrossRef]

2011 (1)

2010 (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

2009 (4)

Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009).
[CrossRef] [PubMed]

Y. Z. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009).
[CrossRef] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

S. Y. Chou and Q. F. Xia, “Improved nanofabrication through guided transient liquefaction,” Nat. Nanotechnol. 3(5), 295–300 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

2006 (1)

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73(3), 033401 (2006).
[CrossRef]

2005 (1)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

2000 (1)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

1996 (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

1993 (1)

P. C. Hauser and S. S. S. Tan, “All-solid-state instrument for fluorescence-based fiberoptic chemical sensors,” Analyst (Lond.) 118(8), 991–995 (1993).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Bonod, N.

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Chou, S. Y.

W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[CrossRef] [PubMed]

S. Y. Chou and Q. F. Xia, “Improved nanofabrication through guided transient liquefaction,” Nat. Nanotechnol. 3(5), 295–300 (2008).
[CrossRef] [PubMed]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Christensen, D. A.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Chu, Y. Z.

Crozier, K. B.

Ctistis, G.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Cui, B.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Cui, Y.

Ding, F.

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Enoch, S.

N. Bonod, S. Enoch, L. F. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[CrossRef] [PubMed]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

Evgeny, P.

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giersig, M.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Hauser, P. C.

P. C. Hauser and S. S. S. Tan, “All-solid-state instrument for fluorescence-based fiberoptic chemical sensors,” Analyst (Lond.) 118(8), 991–995 (1993).
[CrossRef]

He, S.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Herron, J. N.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Hu, J.

Ito, T.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Kempa, K.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Kong, L. S.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, J.

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73(3), 033401 (2006).
[CrossRef]

Li, L. F.

Li, W. D.

Li, Z.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Marrian, C. R. K.

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol. A 21(5), S207–S215 (2003).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Neviere, M.

N. Bonod, S. Enoch, L. F. Li, P. Evgeny, and M. Neviere, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[CrossRef] [PubMed]

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

Okazaki, S.

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

Ozbay, E.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Patoka, P.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Peters, C. R.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Plowman, T. E.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Popov, E.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Reichert, W. M.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Reinisch, R.

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Sinton, D.

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Sun, X. Y.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Tan, S. S. S.

P. C. Hauser and S. S. S. Tan, “All-solid-state instrument for fluorescence-based fiberoptic chemical sensors,” Analyst (Lond.) 118(8), 991–995 (1993).
[CrossRef]

Tennant, D. M.

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol. A 21(5), S207–S215 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

Wang, H. K.

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

Wang, X.

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

Webb, K. J.

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73(3), 033401 (2006).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, W.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Xia, Q. F.

S. Y. Chou and Q. F. Xia, “Improved nanofabrication through guided transient liquefaction,” Nat. Nanotechnol. 3(5), 295–300 (2008).
[CrossRef] [PubMed]

Zhang, W.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Zhuang, L.

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Analyst (Lond.) (1)

P. C. Hauser and S. S. S. Tan, “All-solid-state instrument for fluorescence-based fiberoptic chemical sensors,” Analyst (Lond.) 118(8), 991–995 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Biosens. Bioelectron. (1)

T. E. Plowman, W. M. Reichert, C. R. Peters, H. K. Wang, D. A. Christensen, and J. N. Herron, “Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor,” Biosens. Bioelectron. 11(1-2), 149–160 (1996).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

S. Enoch, E. Popov, M. Neviere, and R. Reinisch, “Enhanced light transmission by hole arrays,” J. Opt. A, Pure Appl. Opt. 4(5), S83 (2002).
[CrossRef]

J. Vac. Sci. Technol. A (1)

C. R. K. Marrian and D. M. Tennant, “Nanofabrication,” J. Vac. Sci. Technol. A 21(5), S207–S215 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14(6), 4129–4133 (1996).
[CrossRef]

W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. S. Kong, and S. Y. Chou, “Large area high density quantized magnetic disks fabricated using nanoimprint lithography,” J. Vac. Sci. Technol. B 16(6), 3825–3829 (1998).
[CrossRef]

Laser Photon. Rev. (1)

R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. 4(2), 311–335 (2010).
[CrossRef]

Nano Lett. (2)

G. Ctistis, P. Patoka, X. Wang, K. Kempa, and M. Giersig, “Optical transmission through hexagonal arrays of subwavelength holes in thin metal films,” Nano Lett. 7(9), 2926–2930 (2007).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

S. Y. Chou and Q. F. Xia, “Improved nanofabrication through guided transient liquefaction,” Nat. Nanotechnol. 3(5), 295–300 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Nature (2)

T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

K. J. Webb and J. Li, “Analysis of transmission through small apertures in conducting films,” Phys. Rev. B 73(3), 033401 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[CrossRef] [PubMed]

Other (1)

W. D. Li, J. Hu, and S. Y. Chou, “Nanoantenna enhanced transmission through blocked metallic subwavelength holes,” presented at Nanometa, The 3rd International Topical Meeting on Nanophotonics and Metamaterials, Tirol, Austria, Jan. 3–6, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Subwavelength metallic hole arrays with and without metal nanodisk blockers. a, Schematic of a periodic hole array in Au film with and without Au nanodisks placed on top of each hole. The substrates are transparent fused silica with pillars which support the disks. The diameter of the disk is large than the hole. The structure was fabricated by a self-aligned and self-limited process. And b, Schematic drawing of light transmission through blocked holes and open holes.

Fig. 2
Fig. 2

SEM pictures of fabricated gold hole arrays (a) with and (b) without gold nanodisks, showing in tilted views (top) and zoom-in cross-sectional views (bottom).

Fig. 3
Fig. 3

Schematic of self-aligned fabrication of subwavelength hole arrays with and without nano-disk blockers. (a) Chromium disks are patterned on transparent fused silica substrate by nanoimprint; (b) SiO2 pillars are etched in fluorine-based RIE with the Cr masks; (c) Isotropic etching of SiO2 in BOE solution creates an undercut beneath the chromium disks; (d) E-beam evaporation deposits gold from normal direction to the wafer, creating Au disks on top of the pillars and the gold film on pillar foot in a self-aligned manner; and (e) After the optical measurements of the blocked holes, a selective Cr etch dissolves the Cr layer and lifts-off the top gold nanodisks, while leaving the rest of the structures unchanged.

Fig. 4
Fig. 4

Comparison of transmittance measurements showing 70% transmission enhancement by the blocked hole array than the open hole array. (a) Experimental transmittance spectra measured on a periodic gold hole array blocked by Au nanodisks and the same gold hole array after removal of the nanodisks. The hole array has a hole diameter of 70 nm and a gold thickness of 40 nm, the gold nanodisks have a diameter of 85 nm, and the SiO2 pillar height is 52 nm. (b) Plot of transmission enhancement ratio calculated by dividing the optical transmission of blocked and open gold hole arrays. A maximum enhancement of 1.7x is observed at 680 nm.

Fig. 5
Fig. 5

Experimental demonstration of tuning the optical properties through the blocked hole arrays by varying the coupling gap between the nanodisks and holes. (a) A schematic and SEMs of gold subwavelength hole arrays coupled to gold nanodisks with different gaps. (b) Measured transmittance and (c) measured reflectance spectra on the structures in (a). (d) Calculated absorbance spectra based on the measured reflectance and transmittance. (e) Plot of measured peak wavelengths (red) and peak transmission efficiencies (blue) versus the heights of the central SiO2 pillars.

Fig. 6
Fig. 6

Tuning of the transmission properties of the nanodisk-coupled hole arrays by varying the hole diameter. (a) Measured transmission spectra on the blocked hole arrays with different hole diameters and a fixed gold thickness of 40 nm. (b) Measured peak transmission wavelength versus the diameters of the pillars as measured in (a).

Fig. 7
Fig. 7

Simulation of enhanced transmission through blocked and open gold hole arrays. (a) Simulated transmittance spectra of both structures with a nanodisk diameter of 90 nm, a SiO2 pillar height of 80 nm, a hole diameter of 80 nm and a gold thickness of 50 nm. (b) Calculated enhancement ratio from transmission spectra in (a). (c)(d) Simulated electrical field distributions of the blocked and open hole arrays at 650 nm wavelength, corresponding to the peak transmission of the blocked hole array. Locally enhanced electrical field resulted from the antenna effect of the coupling nnaodisks is responsible for the enhanced transmission through the blocked holes. (e)(f) Simulated Poyting vectors of the blocked and open metallic hole array.

Fig. 8
Fig. 8

Transmission as a function of wavelength through the blocked holes with a gold bar connecting the disk and Au film. (a) Schematic of blocked holes with partial connection to the blocking disks. The width of the bar connecting the disk and the Au film varies, d, from 10 nm to 50 nm. The bar is placed along X direction, which is the same as the incident polarization direction. (b) Simulated transmission spectra of blocked holes with different connecting bar width.

Metrics