Abstract

We present a full wave 3D simulation study of optical absorption enhancement in solution processed metal-semiconductor nanocomposite ultrathin films, which consist of colloidal metallic nanoparticles (MNPs) and semiconductor matrices of polymer and colloidal quantum dots (CQD). We present an approach for modeling the optical properties of a CQD film, and study the effect of the optical properties of the semiconductor in the near field enhancement showing that CQD is a very promising platform to exploit the benefits of the near-field effects. We show that over a 100% enhancement can be achieved in the visible-near infrared region of the spectrum for CQD PbS films, with a maximum gain factor of 4 when MNPs are on resonance. We study in detail the effect of MNP capping for different ligand lengths and materials and propose solutions to optimize absorption enhancement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [CrossRef] [PubMed]
  2. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
    [CrossRef] [PubMed]
  3. J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
    [CrossRef] [PubMed]
  4. J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
    [CrossRef] [PubMed]
  5. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
    [CrossRef]
  6. I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
    [CrossRef] [PubMed]
  7. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
    [CrossRef] [PubMed]
  8. J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.) 23(1), 12–29 (2011).
    [CrossRef] [PubMed]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
    [CrossRef]
  11. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
    [CrossRef]
  12. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  13. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
    [CrossRef]
  14. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
    [CrossRef] [PubMed]
  15. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [CrossRef] [PubMed]
  16. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
    [CrossRef] [PubMed]
  17. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3007 (1997).
    [CrossRef]
  18. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
    [CrossRef] [PubMed]
  19. H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16(13), 2509–2511 (2004).
    [CrossRef]
  20. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
    [CrossRef]
  21. J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
    [CrossRef] [PubMed]
  22. L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
    [CrossRef] [PubMed]
  23. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
    [CrossRef] [PubMed]
  24. J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
    [CrossRef]
  25. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [CrossRef] [PubMed]
  26. Lumerical FDTD version 7 http://www.lumerical.com
  27. V. Lucarini, Kramers-Kronig Relations in Optical Materials Research, Springer (2005).
  28. M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
    [CrossRef] [PubMed]
  29. I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
    [CrossRef]
  30. SOPRA N&K Database, http://www.sopra-sa.com
  31. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York, (1998).
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, (1983).
  34. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
    [CrossRef]
  35. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
    [CrossRef]
  36. A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
    [CrossRef]
  37. A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
    [CrossRef]
  38. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]

2011 (4)

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.) 23(1), 12–29 (2011).
[CrossRef] [PubMed]

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

2010 (11)

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
[CrossRef] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[CrossRef] [PubMed]

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

2009 (2)

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[CrossRef]

2008 (4)

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

2006 (3)

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

2005 (2)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

2004 (3)

H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16(13), 2509–2511 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

1998 (2)

A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

1997 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alivisatos, A. P.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Allan, G.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Almeida, V. R.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18(S2Suppl 2), A237–A245 (2010).
[CrossRef] [PubMed]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Barkhouse, A. R.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Barrios, C. A.

Bawendi, M. G.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Beard, M. C.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Beck, F.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Beck, F. J.

Bradley, D. D. C.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Brown, M. D.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Bulovic, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Campbell, P.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Caruge, J. M.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Catchpole, K. R.

F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates,” Opt. Express 19(S2Suppl 2), A146–A156 (2011).
[CrossRef] [PubMed]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

Chen, F.-C.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Chen, P.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Chien, F.-C.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Choi, S.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Choulis, S. A.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Clifford, J. P.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Cook, S.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

D’Innocenzo, V.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

De Geyter, B.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Debnath, R.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Delerue, C.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Durrant, J. R.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Fan, S.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Ferry, V. E.

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
[CrossRef]

Fromer, N. A.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Gao, J.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

Geier, M. L.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Giles, M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Grätzel, M.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Green, M. A.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Gur, I.

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Ha, C.-S.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3007 (1997).
[CrossRef]

Halpert, J. E.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Hanna, M. C.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Hatton, R. A.

L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
[CrossRef] [PubMed]

Hens, Z.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Hiramatsu, H.

H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16(13), 2509–2511 (2004).
[CrossRef]

Hoogland, S.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Hsiao, Y.-S.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Hsu, C. S.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Huang, M. H.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnston, K. W.

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Khurgin, J. B.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[CrossRef]

Kim, Y.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Konstantatos, G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[CrossRef] [PubMed]

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Kovalenko, M. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

Kramer, I. J.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Kumar, R. S. S.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Kunz, O.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Kuo, C.-H.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Law, M.

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Lee, J.-S.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

Lee, J.-Y.

Lee, M. M.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Levina, L.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Li, H. B. T.

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lipson, M.

Lloyd, M. T.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

Luther, J. M.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McCulloch, I.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Mokkapati, S.

Moreels, I.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Nazeeruddin, M. K.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Nelson, J.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Nozik, A. J.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Osterloh, F. E.

H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16(13), 2509–2511 (2004).
[CrossRef]

Ouyang, Z.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Pegg, L.-J.

L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
[CrossRef] [PubMed]

Penninkhof, J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Petit, C.

A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
[CrossRef]

Petrozza, A.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Peumans, P.

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
[CrossRef]

Pileni, M.

A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
[CrossRef]

Pillai, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Polman, A.

Raabe, I.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Raman, A.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
[CrossRef]

Ree, M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Sargent, E. H.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.) 23(1), 12–29 (2011).
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[CrossRef] [PubMed]

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

Schatz, G. C.

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Schropp, R. E. I.

Schumann, S.

L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
[CrossRef] [PubMed]

Semonin, O. E.

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

Shevchenko, E. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

Snaith, H. J.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Soref, R.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3007 (1997).
[CrossRef]

Sun, G.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[CrossRef]

Suteewong, T.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

Talapin, D. V.

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

Taleb, A.

A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
[CrossRef]

Tang, J.

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.) 23(1), 12–29 (2011).
[CrossRef] [PubMed]

Tuladhar, S. M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

Varlamov, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

Verhagen, E.

Verschuuren, M. A.

Walters, R. J.

Wang, X.

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

Wiesner, U.

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

Wirtz, L.

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Wood, V.

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Wu, J. L.

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

Xu, Q.

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Yu, Z.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

ACS Nano (3)

A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, “Depleted-heterojunction colloidal quantum dot solar cells,” ACS Nano 4(6), 3374–3380 (2010).
[CrossRef] [PubMed]

J. L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011).
[CrossRef] [PubMed]

L.-J. Pegg, S. Schumann, and R. A. Hatton, “Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanocrystals,” ACS Nano 4(10), 5671–5678 (2010).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. Tang and E. H. Sargent, “Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress,” Adv. Mater. (Deerfield Beach Fla.) 23(1), 12–29 (2011).
[CrossRef] [PubMed]

J. M. Luther, J. Gao, M. T. Lloyd, O. E. Semonin, M. C. Beard, and A. J. Nozik, “Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell,” Adv. Mater. (Deerfield Beach Fla.) 22(33), 3704–3707 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface Plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96(26), 261109 (2010).
[CrossRef]

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94(7), 071103 (2009).
[CrossRef]

Chem. Mater. (1)

H. Hiramatsu and F. E. Osterloh, “A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants,” Chem. Mater. 16(13), 2509–2511 (2004).
[CrossRef]

Chem. Rev. (1)

D. V. Talapin, J.-S. Lee, M. V. Kovalenko, and E. V. Shevchenko, “Prospects of colloidal nanocrystals for electronic and optoelectronic applications,” Chem. Rev. 110(1), 389–458 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7527 (2004).
[CrossRef]

J. Lumin. (1)

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121(2), 315–318 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

A. Taleb, C. Petit, and M. Pileni, “Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles,” J. Phys. Chem. B 102(12), 2214–2220 (1998).
[CrossRef]

Mater. Sci. Eng. B (1)

A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties, Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B 149(3), 251–258 (2008).
[CrossRef]

Nano Lett. (2)

M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles,” Nano Lett. 11(2), 438–445 (2011).
[CrossRef] [PubMed]

M. Law, M. C. Beard, S. Choi, J. M. Luther, M. C. Hanna, and A. J. Nozik, “Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model,” Nano Lett. 8(11), 3904–3910 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells,” Nat. Mater. 5(3), 197–203 (2006).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

J. P. Clifford, G. Konstantatos, K. W. Johnston, S. Hoogland, L. Levina, and E. H. Sargent, “Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors,” Nat. Nanotechnol. 4(1), 40–44 (2009).
[CrossRef] [PubMed]

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, and M. G. Bawendi, “Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers,” Nat. Photonics 2(4), 247–250 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (3)

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

I. Moreels, G. Allan, B. De Geyter, L. Wirtz, C. Delerue, and Z. Hens, “Dielectric function of colloidal lead chalcogenide quantum dos obtained by a Kramers-Krönig analysis of the absorbance spectrum,” Phys. Rev. B 81(23), 235319 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

H. R. Stuart and D. G. Hall, “Enhanced Dipole-Dipole Interaction between Elementary Radiatiors Near a Surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. U.S.A. 107(41), 17491–17496 (2010).
[CrossRef] [PubMed]

Science (1)

I. Gur, N. A. Fromer, M. L. Geier, and A. P. Alivisatos, “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310(5747), 462–465 (2005).
[CrossRef] [PubMed]

Other (5)

SOPRA N&K Database, http://www.sopra-sa.com

E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York, (1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, (1983).

Lumerical FDTD version 7 http://www.lumerical.com

V. Lucarini, Kramers-Kronig Relations in Optical Materials Research, Springer (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Comparison between full CQD modeling and effective medium approach. (a) A monolayer section of hexagonaly.close-packed CQD (dark red) and MNPs (black). (b) The same MNP distribution inside a homogeneous effective film. The nanocomposite layers are illuminated from the top with an x-polarized plane wave. The concentration can be tuned by modifying the C factor for a given MNP size. Field intensities in a cross section of the film for (c) packed QDs and (d) effective medium. (e) Normalized absorption in the CQDs (red) and effective medium (blue) with (solid) and without (dotted) MNPs. The spectral gain is shown in the inset.

Fig. 2
Fig. 2

Effect of the host medium optical properties on the near field enhancement, D = 10nm Ag MNPs with C = 2. (a) Modifying n(λ), while fixing κ = κPbS,EM (values in the legend correspond to n(λ = 2μm). (b) Fixing n = nPbS,EM and varying κ(λ), from poor to highly absorbing material, maintaining the spectral shape of κPbS,EM but normalizing it at the exciton peak to the indicated values.

Fig. 3
Fig. 3

Left: power absorbed in the host medium normalized to incident power for embedded Ag MNPs and different concentrations; Inset: gain derived from MNPs inclusion; Right: integrated gain (η) for Ag MNPs in the separation-size parametric space; for (a) CQD PbS host medium, and (b) P3HT host medium.

Fig. 4
Fig. 4

Gain, power absorbed in MNPs and field enhancement spatial profile (calculated as 20 log |Ew MNPs/Ew/o MNPs| [dB]) for different MNPs concentrations, for D = 10 nm Ag MNP. Columns A, B, C correspond respectively to C = 4, C = 2.5 and C = 1.5 and rows to wavelengths (on-resonance λ = 585nm row 1, off-resonance λ = 940nm row 2) as is indicated on top of each column. White dashed lines (0 dB) separate areas with positive and negative contributions to the overall absorption in PbS. The field enhancement within MNPs is representative of their losses compared to the absorption in the same volume of a homogeneous PbS film. The average gain as well as the gain at each wavelength is indicated within each panel.

Fig. 5
Fig. 5

Ligand effect on gain for different lengths (Δ) and Ag MNPs, fixed C = 2.5. A ligand shell with refractive index of 1.55 covers the MNP (left). Gain spectrum for D = 10 nm (right).

Fig. 6
Fig. 6

Field enhancement spatial profile, for D = 10 nm Ag MNP and C = 2.5. (dB scale). (a) no ligands on resonance, (b) Δ = 1nm on resonance, (c) |E|2 decay from MNP surface on resonance no ligands on resonance, (d) no ligands off resonance (e) Δ = 1nm off resonance, (f) |E|2 decay from MNP surface on resonance.

Fig. 7
Fig. 7

Effect of ligand refractive index for D = 10nm Ag MNPs C = 2.and Δ = 0.75 nm (a) Gain comparison from organic to inorganic coatings. Field enhancement spatial profile (in dB) for D = 10 nm Ag MNPs and Δ = 0.75 nm ligand of refractive index (b) 1.5 (organic) and (c) 2.5 (titania).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P abs ( r ,ω)dV=0.5ωIm(ε( r ,ω)) | E ( r ,ω) | 2
Abs= SC P abs dV / P in
G(λ)= Ab s w.MNP / Ab s w/o.MNPs

Metrics