Abstract

Nanofocusing of surface plasmon polariton by a conical metal-coated dielectric probe was investigated numerically using the three dimensional volume integral equation. The basic characteristics of the nanofocused optical fields generated by this probe were investigated in detail. The intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip. Enhanced local fields interfere near the tip for certain probe tip shapes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
    [CrossRef]
  3. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  6. V. M. Shalaev and S. Kawata ed., Nanophotonics with Surface Plasmons (Elsevier Science Ltd., 2007).
  7. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Chapman and Hall, 2008).
  8. A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
    [CrossRef]
  9. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  10. M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
    [CrossRef]
  11. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
    [CrossRef] [PubMed]
  12. K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
    [CrossRef]
  13. K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
    [CrossRef]
  14. A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
    [CrossRef]
  15. W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
    [CrossRef] [PubMed]
  16. K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
    [CrossRef]
  17. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
    [CrossRef]
  18. T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009).
    [CrossRef] [PubMed]
  19. F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics 4(1), 51–59 (2009).
    [CrossRef]
  20. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
    [CrossRef]
  21. A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14(23), 11324–11329 (2006).
    [CrossRef] [PubMed]
  22. N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
    [CrossRef]
  23. N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express 15(19), 12131–12144 (2007).
    [CrossRef] [PubMed]
  24. D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
    [CrossRef]
  25. K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18(2), 787–798 (2010).
    [CrossRef] [PubMed]
  26. L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6(1), 22–23 (1981).
    [CrossRef] [PubMed]
  27. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).
    [CrossRef]

2010 (2)

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18(2), 787–798 (2010).
[CrossRef] [PubMed]

2009 (2)

T. J. Antosiewicz, P. Wróbel, and T. Szoplik, “Nanofocusing of radially polarized light with dielectric-metal-dielectric probe,” Opt. Express 17(11), 9191–9196 (2009).
[CrossRef] [PubMed]

F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

2008 (4)

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

2007 (6)

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

N. A. Issa and R. Guckenberger, “Fluorescence near metal tips: The roles of energy transfer and surface plasmon polaritons,” Opt. Express 15(19), 12131–12144 (2007).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination,” Opt. Express 15(7), 4106–4111 (2007).
[CrossRef] [PubMed]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

2006 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

A. Downes, D. Salter, and A. Elfick, “Simulations of atomic resolution tip-enhanced optical microscopy,” Opt. Express 14(23), 11324–11329 (2006).
[CrossRef] [PubMed]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

2004 (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

2000 (1)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

1997 (1)

1981 (1)

1979 (1)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).
[CrossRef]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Andrews, S. R.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Antosiewicz, T. J.

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

Baida, F. I.

F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Burr, G. W.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Chang, H.-C.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

Chen, W.

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Davis, L. W.

De Angelis, F.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Di Fabrizio, E.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Ding, W.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Dmitri, K.

M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Downes, A.

Dvoynenko, M. M.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elfick, A.

Fischer, U. C.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Goncharenko, A. V.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Grosjean, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

Guckenberger, R.

Issa, N. A.

Katayama, K.

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Kobayashi, T.

Kurihara, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Liberale, C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Maier, S. A.

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Maletzky, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Morimoto, A.

Nerkararyan, K. V.

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

Otomo, A.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Patsakos, G.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Salter, D.

Stockman, M. I.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Suzuki, K.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Syouji, A.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Szoplik, T.

Takahara, J.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
[CrossRef] [PubMed]

Taki, H.

Tanaka, K.

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18(2), 787–798 (2010).
[CrossRef] [PubMed]

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka, K. Katayama, and M. Tanaka, “Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture,” Opt. Express 18(2), 787–798 (2010).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Vogel, M. W.

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wang, J.-K.

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

Wróbel, P.

Yamagishi, S.

Yamamoto, K.

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

Yokoyama, S.

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

Zhan, Q.

Adv. Mater. (Deerfield Beach Fla.) (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics - A route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13(19), 1501–1505 (2001).
[CrossRef]

Appl. Phys. B (1)

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to-edge plasmon modes,” Appl. Phys. B 93(1), 946–2171 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

A. V. Goncharenko, M. M. Dvoynenko, H.-C. Chang, J.-K. Wang, H.-C. Chang, and J.-K. Wang, “Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy,” Appl. Phys. Lett. 88(10), 104101 (2006).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

J. Appl. Phys. (3)

A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87(8), 3785 (2000).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

D. K. Gramotnev, M. W. Vogel, and M. I. Stockman, “Optimized nonadiabatic nanofocusing of plasmons by tapered metal rod,” J. Appl. Phys. 104(3), 034311 (2008).
[CrossRef]

J. Phys. A: Math. Theor. (2)

K. Kurihara, A. Otomo, A. Syouji, J. Takahara, K. Suzuki, and S. Yokoyama, “Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach,” J. Phys. A: Math. Theor. 40(41), 12479–12503 (2007).
[CrossRef]

K. Kurihara, K. Yamamoto, J. Takahara, and A. Otomo, “Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables,” J. Phys. A: Math. Theor. 41(29), 295401 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[CrossRef] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Lett. A (1)

M. W. Vogel, D. K. Gramotnev, and K. Dmitri, “Adiabatic nano-focusing of plasmons by metallic tapered rods in the presence of dissipation,” Phys. Lett. A 363(5-6), 507–511 (2007).
[CrossRef]

Phys. Rev. A (2)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979).
[CrossRef]

W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Plasmonics (2)

F. I. Baida and A. Belkhir, “Superfocusing and Light Confinement by Surface Plasmon Excitation Through Radially Polarized Beam,” Plasmonics 4(1), 51–59 (2009).
[CrossRef]

N. A. Issa and R. Guckenberger, “Optical nanofocusing on tapered metallic waveguides,” Plasmonics 2(1), 31–37 (2007).
[CrossRef]

Other (2)

V. M. Shalaev and S. Kawata ed., Nanophotonics with Surface Plasmons (Elsevier Science Ltd., 2007).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, Principles of Nanophotonics (Chapman and Hall, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Geometry of the metal-coated conical dielectric probe on a metal screen. The metal screen has dimensions Bx×By×Bz and is located in the x-y plane. The conical structure has a base-radius R and a height h. The dielectric conical probe is coated with a metal whose permittivity is ε2. The metal coating has a thickness d. The metal screen contains a circular aperture of radius R-d. Permittivities of the surrounding free space, screen, and dielectric in the conical structure are denoted by ε0, ε1 and ε2, respectively. A radially polarized Gaussian beam is normally incident on the screen from the negative z direction. The beam axis coincides with the z-axis. The whole structure is discretized into the tiny cubes of size δ, as depicted in the inset.

Fig. 2
Fig. 2

Arrangement of cubes that makes probe 1. The cubes in only top 14 layers are shown. There is a total 328 layers (k0h = 16.4), which are parallel to the x-y plane. (a) The probe structure is discretized by cubes of size k0δ = 0.05 (h = 5 nm). (b) Each cube shown in (a) is divided into eight smaller cubes of size δ/2 ( = 2.5 nm) when applying the MoM to the VIE.

Fig. 3
Fig. 3

Distributions of electric field components in the x-z plane for probe 1. Im[Ex(x, 0, z)] is shown in (a) and (c), and Im[Ez(x, 0, z)] is shown in (b) and (d). The results of (a) and (b) were obtained using discrete cubes with δ (5 nm) and (c) and (d) were obtained using discrete cube with δ /2 when applying MoM. The whole structure is composed of tiny cubes of size δ. The metal coating is Au (ε2/ε0 = –13.8 – j1.08).

Fig. 4
Fig. 4

(a) Optical intensity |E(x, 0, z)|2 distributions in the x-z plane for probe 1. (b) Vector characteristics of the electric field Im[E(x, 0, z)] in the x-z plane for probe 1. The metal coating is Au (ε2/ε0 = –13.8 – j1.08).

Fig. 5
Fig. 5

Arrangements of cubes that make up the tips of (a) probe 2 (k0h = 16.35), (b) probe 3 (k0h = 16.3) and (c) probe 4 (k0h = 16.2). These figures show the layers above 314th of the 328 horizontal layers.

Fig. 6
Fig. 6

Optical intensity distributions along the z-axis |E(0, 0, l)|2 and FWHM (full width at half-maximum) of the intensity distributions for probes 1-4. The abscissa shows l = z- h, which is the distance from the upper surface of the top cube of the tip. The metal coating is Au (ε20 = –13.8 – j1.08).

Fig. 7
Fig. 7

Arrangement of cubes in (a) probe 5 and (b) probe 6. The figure shows (a) top 15 layers of the 329 horizontal layers and (b) top 16 layers of the 330 horizontal layers.

Fig. 8
Fig. 8

Distributions of optical intensity along the z-axis |E(0, 0, l)|2 for probes 4 and 5. The abscissa l = z- h is the distance from the upper surface of the top cube on the tip. For reference, the solid red circles indicate the results for probe 1. The metal coating is Au (ε2/ε0 = 13.8 – j1.08).

Fig. 9
Fig. 9

(a) Optical intensity |E(x, 0, z)|2 distribution in the x-z plane for probe 6. (b) Vector characteristics of the electric field Im[E(x, 0, z)] in the x-z plane for probe 6. The metal coating is Au (ε20 = 13.8 – j1.08). The region surrounded by the red ellipse indicates the low-intensity spot and blue line indicates the boundary between the tip and the free space on the z-axis. Positions of third cube below the top cube and of the top cube are indicated by (A) and (B), respectively.

Fig. 10
Fig. 10

Optical intensity distributions along the z-axis |E(0, 0, l)|2 for probe 7 for Au and three coating metals. The Abscissa l = z-h is the distance from the upper surface of the top cube on the tip. The solid red circles indicate the results for probe 1 for reference. Open red circles indicate the results under the assumption of no dissipation in probe 1 coated with Au.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E r (r,0)=2A(r/w)exp[ (r/w) 2 ] E z (r,0)=j4A[1 (r/w) 2 ]/( k 0 w)exp[ (r/w) 2 ],

Metrics