Abstract

We numerically investigate the effect of ionization on ultrashort high-energy pulses propagating in gas-filled kagomé-lattice hollow-core photonic crystal fibers by solving an established uni-directional field equation. We consider the dynamics of two distinct regimes: ionization induced blue-shift and resonant dispersive wave emission in the deep-UV. We illustrate how the system evolves between these regimes and the changing influence of ionization. Finally, we consider the effect of higher ionization stages.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  3. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28(16), 1448–1450 (2003).
    [CrossRef] [PubMed]
  4. J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
    [CrossRef] [PubMed]
  5. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13(16), 6153–6159 (2005).
    [CrossRef] [PubMed]
  6. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
    [CrossRef] [PubMed]
  7. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  8. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  10. A. Sullivan, H. Hamster, S. P. Gordon, R. W. Falcone, and H. Nathel, “Propagation of intense, ultrashort laser pulses in plasmas,” Opt. Lett. 19(19), 1544–1546 (1994).
    [CrossRef] [PubMed]
  11. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [CrossRef]
  12. A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
    [CrossRef]
  13. S. J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express 18(6), 5367–5374 (2010).
    [CrossRef] [PubMed]
  14. M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
    [CrossRef]
  15. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
    [CrossRef]
  16. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
  17. A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47(27), 4856–4863 (2008).
    [CrossRef] [PubMed]
  18. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
    [CrossRef] [PubMed]
  19. S. Augst, D. D. Meyerhofer, D. Strickland, and S. L. Chin, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B 8(4), 858–867 (1991).
    [CrossRef]
  20. G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
    [CrossRef] [PubMed]
  21. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  22. W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
    [CrossRef]
  23. H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7(4), 574–586 (1990).
    [CrossRef]
  24. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).
  25. G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64(1), 013409 (2001).
    [CrossRef]
  26. P. Hölzer, W. Chang, J. Nold, J. C. Travers, A. Nazarkin, N. Y. Joly and P. St.J. Russell, “Nonlinear optics in gas-filled HC-PCF in the plasma regime,” CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMJ3.
  27. G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23(10), 762–764 (1998).
    [CrossRef] [PubMed]
  28. S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97(1-2), 25–28 (1993).
    [CrossRef]
  29. R. T. Chapman, T. J. Butcher, P. Horak, F. Poletti, J. G. Frey, and W. S. Brocklesby, “Modal effects on pump-pulse propagation in an Ar-filled capillary,” Opt. Express 18(12), 13279–13284 (2010).
    [CrossRef] [PubMed]
  30. S. P. LeBlanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blueshifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10(10), 1801–1809 (1993).
    [CrossRef]
  31. F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
    [CrossRef]
  32. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [CrossRef] [PubMed]
  33. W. Chang, A. Nazarkin, J. C. Travers, P. Hölzer, J. Nold, N. Y. Joly, and P. St. J. Russell, “Theoretical study of dispersive wave generation in gas-filled hollow-core PCF above the plasma threshold,” in CLEO/Europe and EQEC 2011 Conference Digest, (Optical Society of America, 2011), paper CD.P.10.
  34. N. Zhavoronkov, “Efficient spectral conversion and temporal compression of femtosecond pulses in SF6.,” Opt. Lett. 36(4), 529–531 (2011).
    [CrossRef] [PubMed]
  35. S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
    [CrossRef] [PubMed]

2011

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

N. Zhavoronkov, “Efficient spectral conversion and temporal compression of femtosecond pulses in SF6.,” Opt. Lett. 36(4), 529–531 (2011).
[CrossRef] [PubMed]

2010

2008

2007

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
[CrossRef]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

2006

2005

2003

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64(1), 013409 (2001).
[CrossRef]

1998

1995

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

1994

1993

S. P. LeBlanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blueshifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10(10), 1801–1809 (1993).
[CrossRef]

S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97(1-2), 25–28 (1993).
[CrossRef]

W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
[CrossRef]

1992

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

1991

1990

G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
[CrossRef] [PubMed]

H. R. Reiss, “Relativistic strong-field photoionization,” J. Opt. Soc. Am. B 7(4), 574–586 (1990).
[CrossRef]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

1986

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

1967

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

1966

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Augst, S.

Béjot, P.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Benabid, F.

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Biancalana, F.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Börzsönyi, A.

Brabec, T.

G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23(10), 762–764 (1998).
[CrossRef] [PubMed]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Brocklesby, W. S.

Burger, S.

Burnett, K.

Butcher, T. J.

Chang, W.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

Chapman, R. T.

Chin, S. L.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Couny, F.

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

DeMartini, F.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

Downer, M. C.

W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Falcone, R. W.

Faucher, O.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Fedotov, A. B.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
[CrossRef]

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28(16), 1448–1450 (2003).
[CrossRef] [PubMed]

Frey, J. G.

Gaeta, A.

Gallagher, M.

Geissler, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Gibson, G.

G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
[CrossRef] [PubMed]

Gordon, S. P.

Gustafson, T. K.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

Hamster, H.

Heiner, Z.

Henin, S.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Hensley, C.

Herrmann, J.

Hertz, E.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Hölzer, P.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Horak, P.

Husakou, A.

Im, S. J.

Ivanov, M. Yu.

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64(1), 013409 (2001).
[CrossRef]

Joly, N. Y.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Kalashnikov, M. P.

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

Kasparian, J.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Kelley, P. L.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

Kinsler, P.

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[CrossRef]

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Koch, K.

Konorov, S. O.

Kovács, A. P.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Krausz, F.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Lavorel, B.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

LeBlanc, S. P.

Light, P. S.

Loriot, V.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Luk, T. S.

G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Meyerhofer, D. D.

Nathel, H.

Nazarkin, A.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Osvay, K.

Ouzounov, D.

Pearce, G. J.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).

Podlipensky, A.

Poletti, F.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).

Poulton, C. G.

Rae, S. C.

S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97(1-2), 25–28 (1993).
[CrossRef]

S. P. LeBlanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blueshifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10(10), 1801–1809 (1993).
[CrossRef]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

Reiss, H. R.

Rhodes, C. K.

G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
[CrossRef] [PubMed]

Russell, P. St. J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Sauerbrey, R.

Scharrer, M.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Schnurer, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Scrinzi, A.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Serebryannikov, E. E.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
[CrossRef]

Siders, C. W.

W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
[CrossRef]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

St J Russell, P.

Strickland, D.

Sullivan, A.

Tempea, G.

G. Tempea and T. Brabec, “Theory of self-focusing in a hollow waveguide,” Opt. Lett. 23(10), 762–764 (1998).
[CrossRef] [PubMed]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).

Townes, C. H.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

Venkateraman, N.

Vieillard, T.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Wiederhecker, G. S.

Wolf, J.-P.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

J. Nold, P. Hölzer, N. Y. Joly, G. K. L. Wong, A. Nazarkin, A. Podlipensky, M. Scharrer, and P. St. J. Russell, “Pressure-controlled phase matching to third harmonic in Ar-filled hollow-core photonic crystal fiber,” Opt. Lett. 35(17), 2922–2924 (2010).
[CrossRef] [PubMed]

Wood, W. M.

W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
[CrossRef]

Yudin, G. L.

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64(1), 013409 (2001).
[CrossRef]

Zhavoronkov, N.

Zheltikov, A. M.

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
[CrossRef]

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Enhanced four-wave mixing in a hollow-core photonic-crystal fiber,” Opt. Lett. 28(16), 1448–1450 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

IEEE Trans. Plasma Sci.

W. M. Wood, C. W. Siders, and M. C. Downer, “Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,” IEEE Trans. Plasma Sci. 21(1), 20–32 (1993).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

S. C. Rae, “Ionization-induced defocusing of intense laser pulses in high-pressure gases,” Opt. Commun. 97(1-2), 25–28 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, “Self-steepening of light pulses,” Phys. Rev. 164(2), 312–323 (1967).
[CrossRef]

Phys. Rev. A

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[CrossRef] [PubMed]

S. C. Rae and K. Burnett, “Detailed simulations of plasma-induced spectral blueshifting,” Phys. Rev. A 46(2), 1084–1090 (1992).
[CrossRef] [PubMed]

G. Gibson, T. S. Luk, and C. K. Rhodes, “Tunneling ionization in the multiphoton regime,” Phys. Rev. A 41(9), 5049–5052 (1990).
[CrossRef] [PubMed]

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64(1), 013409 (2001).
[CrossRef]

A. B. Fedotov, E. E. Serebryannikov, and A. M. Zheltikov, “Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers,” Phys. Rev. A 76(5), 053811 (2007).
[CrossRef]

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010).
[CrossRef]

Phys. Rev. Lett.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnurer, F. Krausz, and T. Brabec, “Light propagation in field-ionizing media: Extreme nonlinear optics,” Phys. Rev. Lett. 83(15), 2930–2933 (1990).
[CrossRef]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011).
[CrossRef] [PubMed]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, “Higher-order Kerr terms allow ionization-free filamentation in gases,” Phys. Rev. Lett. 104(10), 103903 (2010).
[CrossRef] [PubMed]

Rep. Prog. Phys.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Sov. Phys. JETP

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–928 (1966).

Other

P. Hölzer, W. Chang, J. Nold, J. C. Travers, A. Nazarkin, N. Y. Joly and P. St.J. Russell, “Nonlinear optics in gas-filled HC-PCF in the plasma regime,” CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CMJ3.

W. Chang, A. Nazarkin, J. C. Travers, P. Hölzer, J. Nold, N. Y. Joly, and P. St. J. Russell, “Theoretical study of dispersive wave generation in gas-filled hollow-core PCF above the plasma threshold,” in CLEO/Europe and EQEC 2011 Conference Digest, (Optical Society of America, 2011), paper CD.P.10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A comparison between the wavelength dependent effective refractive indices of the fundamental mode calculated using the approximate analytical model, Eq. (2), and the finite element method for an evacuated ideal structure having the effective core-diameter of 25 μm. The fundamental mode profile is shown in the inset. (b) Variation of β2 with wavelength for a kagomé-lattice HC-PCF, with an effective core-diameter of 25 μm, filled with argon at different pressures.

Fig. 2
Fig. 2

Pressure dependent output spectra from 10 cm of argon-filled kagomé-lattice HC-PCF (20 μm effective core diameter) pumped with a 30 fs Gaussian pulse at 800 nm with an energy of 2.5 μJ (a) with the ionization term, and (b) without ionization. The zero dispersion wavelength is shown by the dashed curve. A and N indicate the regions of anomalous and normal dispersion. Detailed numerical studies on two different regimes, denoted by the horizontal lines labeled (i) and (ii), are given in Sections 4 and 5.

Fig. 3
Fig. 3

Light-plasma interaction at 2 bar; (a) shows the temporal evolution on a linear scale, while (b) shows the spectral evolution on a logarithmic scale. The vertical dashed-line in (b) corresponds to the zero-dispersion wavelength. The ionization fraction is plotted against fiber length in (c). The temporal and spectral slices of the pulse after propagating 6.3 cm are presented in (d) and (e). The initial spectrum is shown with the green dashed-line in (e).

Fig. 4
Fig. 4

UV light generation in kagomé-lattice HC-PCF filled with argon at 4 bar; (a) shows the temporal evolution in linear scale, while (b) shows the spectral evolution in logarithmic scale; (c) and (d) show the temporal and spectral evolution when the ionization term is not included; (e) – (h) show the time domain slices of the pulse at positions indicated by the dashed lines in (a). The vertical lines in (b) and (d) indicate the zero-dispersion wavelength.

Fig. 5
Fig. 5

Numerical propagation of 3 μJ, 30 fs pulse centered at 800 nm in kagomé-lattice HC-PCF with effective core diameter of 20 μm and filled with a gas with the dispersion of argon at 1 bar, but with the ionization levels of SF6. (a) Temporal (linear) and spectral (logarithmic) evolution of the pulse when up to fifth-order ionization processes are taken into account. (b) The results when only first-order ionization is included. (c) The electron density as a fraction of the initial gas density for both cases. (d) The evolution of the peak intensity. (e) The evolution of the pulse energy as it propagates. The blue solid lines are the numerical results where up to fifth-order ionization is included while the red dashed lines are results where only the first-order ionization is included.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ˜ (z,ω) z =i( β(ω) ω v ) E ˜ (z,ω) α(ω) 2 E ˜ (z,ω)+i ω 2 2 c 2 ε 0 β(ω) { P NL (z,t) },
β mn (ω)= ω c ( n gas (ω) 1 2 ( u mn c ωa ) 2 ),
P NL (z,t)= ε 0 χ (3) (1 f R )E (z,t) 3 + ε 0 χ (3) f R E(z,t) R(t t )E (z, t ) 2 d t + P e (z,t),
P e (z,t)= t d N e ( t ) d t I p E(z, t ) d t + e 2 m e t N e ( t )E(z, t )d t d t
N e (t)= N 0 ( 1exp( t W( t )d t ) ),
W(t)= ω p | C n* | 2 ( 4 ω p ω t ) 2n*1 exp( 4 ω p 3 ω t ),
N 0 N 1+ + e N 2+ +2 e N 3+ +3 e ...,
d N 1+ dt = W 1+ N 0 W 2+ N 1+ , d N (n1)+ dt = W (n1)+ N (n2)+ W n+ N (n1)+ , d N n+ dt = W n+ N (n1)+ .

Metrics