Abstract

We explore the use of a highly nonlinear chalcogenide-silica waveguide for supercontinuum generation in the near infrared. The structure was fabricated by a pressure-assisted melt-filling of a silica capillary fiber (1.6 µm bore diameter) with Ga4Ge21Sb10S65 glass. It was designed to have zero group velocity dispersion (for HE11 core mode) at 1550 nm. Pumping a 1 cm length with 60 fs pulses from an erbium-doped fiber laser results in the generation of octave-spanning supercontinuum light for pulse energies of only 60 pJ. Good agreement is obtained between the experimental results and theoretical predictions based on numerical solutions of the generalized nonlinear Schrödinger equation. The pressure-assisted melt-filling approach makes it possible to realize highly nonlinear devices with unusual combinations of materials. For example, we show numerically that a 1 cm long As2S3:silica step-index fiber with a core diameter of 1 µm, pumped by 60 fs pulses at 1550 nm, would generate a broadband supercontinuum out to 4 µm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18(24), 24729–24734 (2010).
    [CrossRef] [PubMed]
  2. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  3. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005).
    [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  5. M. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004).
    [CrossRef] [PubMed]
  6. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  7. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  8. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
    [CrossRef]
  9. F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
    [CrossRef] [PubMed]
  10. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
    [CrossRef]
  11. C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
    [CrossRef]
  12. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  13. B. G. Aitken, “GeAs sulfide glasses with unusually low network connectivity,” J. Non-Cryst. Solids 345–346, 1–6 (2004).
    [CrossRef]
  14. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
    [CrossRef] [PubMed]
  15. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
    [CrossRef]
  16. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
    [CrossRef]
  17. A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009).
    [CrossRef]
  18. A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009).
    [CrossRef]
  19. M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  20. The minimum effective mode area was determined by searching for the core radius that yields the smallest effective area at a fixed core index.
  21. Schott Optical Glass Data Sheets (2006).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  23. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
    [CrossRef] [PubMed]
  24. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008).
    [CrossRef] [PubMed]
  25. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2010).
  26. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002).
    [CrossRef] [PubMed]
  27. Heraeus Datasheet for Suprasil glass Heraeus Datasheet for Suprasil glass.
  28. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4, 665–678 (2002).

2011 (4)

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

2010 (3)

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18(24), 24729–24734 (2010).
[CrossRef] [PubMed]

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[CrossRef]

2009 (3)

A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009).
[CrossRef]

A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009).
[CrossRef]

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008).
[CrossRef] [PubMed]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

2006 (3)

2005 (1)

2004 (4)

2002 (2)

N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27(3), 152–154 (2002).
[CrossRef] [PubMed]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4, 665–678 (2002).

2000 (1)

Adam, J. L.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Aggarwal, I. D.

Aitken, B. G.

B. G. Aitken, “GeAs sulfide glasses with unusually low network connectivity,” J. Non-Cryst. Solids 345–346, 1–6 (2004).
[CrossRef]

Biancalana, F.

Birks, T. A.

Boussard-Pledel, C.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Brawley, G.

Brilland, L.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Bureau, B.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Chapman, B. H.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Conseil, C.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Coulombier, Q.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Da, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

Dekker, S.

Dekker, S. A.

Desevedavy, F.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Duverger-Arfuso, C.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Efimov, A.

Eggleton, B. J.

Enany, A. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

Foster, M.

Gaeta, A.

Gapontsev, V.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Goto, T.

Granzow, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

Houizot, P.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Hudson, D. D.

Jackson, S. D.

Joly, N.

Joly, N. Y.

Judge, A. C.

Knight, J. C.

Kudlinski, A.

Kumar, V. V. R. K.

Li, E. B.

Luan, F.

Lucas, J.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Magi, E.

Mägi, E. C.

Mechin, D.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Moizan, V.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Moll, K.

Moss, D. J.

Mussot, A.

Nazabal, V.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Nishizawa, N.

Niu, Y.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Omenetto, F. G.

Popov, S.

Popov, S. V.

Ranka, J. K.

Renversez, G.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

Ross, M.

Rulkov, A.

Russell, P. St. J.

Sanghera, J. S.

Schmidt, M. A.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

Shaw, L. B.

Smektala, F.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Stentz, A. J.

Taylor, A. J.

Taylor, J.

Tereshchenko, E. V.

A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009).
[CrossRef]

A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009).
[CrossRef]

Travers, J. C.

Troles, J.

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Tuniz, A.

Tverjanovich, A. S.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009).
[CrossRef]

A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009).
[CrossRef]

Uebel, P.

Vyatkin, M.

Wadsworth, W. J.

Wehner, M. R.

Windeler, R. S.

Wolchover, N. A.

Wondraczek, L.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

Xiong, C.

Appl. Opt. (1)

Glass Phys. Chem. (2)

A. S. Tverjanovich and E. V. Tereshchenko, “Structural investigation of glasses in the x(0.16GaCh(2) · 0.84GeCh(2)) · (1-x)(SbCh(1.5)) (Ch = S, Se) system,” Glass Phys. Chem. 35(5), 475–478 (2009).
[CrossRef]

A. S. Tverjanovich and E. V. Tereshchenko, “Physicochemical and optical properties of glasses in the Ga4Ge21S50-Sb2S3 system,” Glass Phys. Chem. 35(4), 360–363 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (4)

C. Conseil, Q. Coulombier, C. Boussard-Pledel, J. Troles, L. Brilland, G. Renversez, D. Mechin, B. Bureau, J. L. Adam, and J. Lucas, “Chalcogenide step index and microstructured single mode fibers,” J. Non-Cryst. Solids 357(11-13), 2480–2483 (2011).
[CrossRef]

B. G. Aitken, “GeAs sulfide glasses with unusually low network connectivity,” J. Non-Cryst. Solids 345–346, 1–6 (2004).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010).
[CrossRef]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids 357(6), 1558–1563 (2011).
[CrossRef]

J. Opt. (1)

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4, 665–678 (2002).

Mater. Res. Bull. (1)

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008).
[CrossRef]

Opt. Express (7)

M. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004).
[CrossRef] [PubMed]

F. G. Omenetto, N. A. Wolchover, M. R. Wehner, M. Ross, A. Efimov, A. J. Taylor, V. V. R. K. Kumar, A. K. George, J. C. Knight, N. Y. Joly, and P. St. J. Russell, “Spectrally smooth supercontinuum from 350 nm to 3 mum in sub-centimeter lengths of soft-glass photonic crystal fibers,” Opt. Express 14(11), 4928–4934 (2006).
[CrossRef] [PubMed]

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18(24), 24729–24734 (2010).
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
[CrossRef] [PubMed]

A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005).
[CrossRef] [PubMed]

M. Foster, K. Moll, and A. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (5)

Heraeus Datasheet for Suprasil glass Heraeus Datasheet for Suprasil glass.

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2010).

The minimum effective mode area was determined by searching for the core radius that yields the smallest effective area at a fixed core index.

Schott Optical Glass Data Sheets (2006).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the hybrid chalcogenide-silica step index waveguide. (b) Scanning-electron micrograph of the sample used in the experiments (core: Ga4Ge21Sb10S65; cladding: silica; core diameter: 1.6 µm). The sample was cleaved at around 500°C, so the chalcogenide surface is smooth (see text). (c) Side image of a sample with a continuous chalcogenide strand (core diameter 10 µm, outer fiber diameter 200 µm).

Fig. 2
Fig. 2

(a) Core diameter dependence of the GVD of the HE11 mode in a chalcogenide-filled silica capillary fiber at a wavelength of 1550 nm. The fiber used in the experiments had a core diameter of 1600 nm. (b) Minimum effective area of the HE11 mode at 1550 nm as a function of core index for a fused silica cladding (red curve) and an air cladding (green curve). Inset: ratio between the minimum effective modal areas for silica and air clad fibers. The dots indicate the positions of the refractive indices of the different types of core glass discussed (ref: CH: chalcogenide, TE: tellurite, SF6: lead silicate, GD: highly GeO2-doped silica).

Fig. 3
Fig. 3

(a) Schematic of the optical setup. The optical micrographs on the right-hand side show the near-field mode patterns at (A) 1310 nm and (B) 1550 nm. (b) SC spectra of the sample. Over the range 1 to 1.75 µm an OSA was used (minimum detectable spectral power density 10−6 µW/nm). Beyond 1.75 μm (the grey-shaded region) an Ocean Optics (OO) CCD spectrometer was used (minimum detectable spectral power density 10−2 µW/nm). The grey curve is the laser spectrum and the colored curves are the output spectra at different launched pulse energies in pJ (the numbers adjacent to each curve) taking account of the 35% coupling efficiency).

Fig. 4
Fig. 4

(a) Numerically modeled output spectra at different positions (spectral intensity in dB (scale bar on the right)). The dashed black line indicates the zero dispersion wavelength of the HE11 mode at 1550 nm. The upper diagram shows the output spectrum at 1 and 10 cm (ND: normal dispersion, AD: anomalous dispersion regime).

Fig. 5
Fig. 5

(a) Output spectrum of a 1 cm long hybrid device for different core radii (core material: As2S3, cladding: silica. Peak pulse intensity 120 GW/cm2, center wavelength 1550 nm, pulse duration 59 fs). Note that the pulse energy will increase approximately as the square of the core diameter and is ~70 pJ at a diameter of 1100 nm. The spectral intensity is given in dB (scale bar on the right). The dashed black line indicates the zero dispersion wavelength of the fundamental core mode. Inset: schematic of the arsenic hybrid waveguide. (b) Material loss and loss of fundamental core mode for a core diameter of 1 µm. Grey area indicate regime in which the loss of the chalcogenide glass dominates the modal attenuation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A(z,τ) z =DA(z,τ)i( γ( ω 0 )+i γ 1 τ )×( A(z,τ) R(t') | A(z,τ) | 2 dt' )

Metrics