Abstract

A method for spectral combination of lasers with extremely high spectral density is introduced, enabling greater than 80% and theoretically approaching 100% spectral density utilization with no degradation in beam quality. Experiments demonstrating the utility of our method are described, cumulating in a demonstration of a compact, packaged laser with photonic-crystal-fiber-rod amplifiers at 0.5-MW peak power and 0.15-nm wavelength spacing. Our method is potentially scalable to many 100’s of channels within the gain bandwidth of high average power or peak power rare earth doped fiber lasers at any wavelength in a compact footprint and uses only reflective optics and gratings.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Smirnov, L. Glebov, D. Drachenberg, A. Jain, I. Divliansky, G. Venus, and C. Spiegelberg, “Phase Locking and Spectral Combining of Fiber Lasers by Volume Bragg Gratings,” in Fiber Laser Applications, OSA Technical Digest, paper FWB2 (2011).
  2. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
    [CrossRef]
  3. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).
  4. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
    [CrossRef] [PubMed]
  5. T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).
  6. P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).
  7. F. Di Teodoro, M. K. Hemmat, J. Morais, and E. C. Cheung, “High peak power operation of a 100μm-core, Yb-doped rod-type photonic crystal fiber amplifier,” Fiber Lasers VII: Technology, Systems, and Applications, Proc. of SPIE Vol. 7580, 758006 (2010).
  8. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, and L. Li, “Design of high-efficiency dielectric reflection gratings,” J. Opt. Soc. Am. A 14(5), 1124–1136 (1997).
    [CrossRef]

2009 (3)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17(3), 1178–1183 (2009).
[CrossRef] [PubMed]

2007 (2)

S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers,” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
[CrossRef]

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

1997 (1)

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

Augst, S. J.

Boyd, R. D.

Britten, J. A.

Brooks, C. D.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

Brückner, F.

Chow, R.

Clausnitzer, T.

Eberhardt, R.

Fan, T. Y.

Feit, M. D.

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

Gowin, M.

Hoffman, P. R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Honea, E. C.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Jander, D. R.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

Jones, P.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

Jung, M.

Li, L.

Limpert, J.

Liu, A.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Loftus, T. H.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Loomis, G. E.

Ludewigt, K.

Madasamy, P.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

Nguyen, H. T.

Norsen, M.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Perry, M. D.

Peschel, T.

Ranka, J. K.

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

Royse, R.

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Sanchez, A.

Schmidt, O.

Schreiber, T.

Shore, B. W.

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

ten Have, E.

Thomas, A. M.

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

Tsybin, I.

Tünnermann, A.

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

Wirth, C.

IEEE J. Sel. Top. Quantum Electron. (3)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009).

T. H. Loftus, A. M. Thomas, P. R. Hoffman, M. Norsen, R. Royse, A. Liu, and E. C. Honea, “Spectrally beam-combined fiber lasers for high-average-power applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 487–497 (2007).

P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, “Dual-grating spectral beam combination of high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 337–343 (2009).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Other (2)

V. Smirnov, L. Glebov, D. Drachenberg, A. Jain, I. Divliansky, G. Venus, and C. Spiegelberg, “Phase Locking and Spectral Combining of Fiber Lasers by Volume Bragg Gratings,” in Fiber Laser Applications, OSA Technical Digest, paper FWB2 (2011).

F. Di Teodoro, M. K. Hemmat, J. Morais, and E. C. Cheung, “High peak power operation of a 100μm-core, Yb-doped rod-type photonic crystal fiber amplifier,” Fiber Lasers VII: Technology, Systems, and Applications, Proc. of SPIE Vol. 7580, 758006 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a.) A schematic diagram of a chirp-precompensated SBC system, showing the propagation of the central rays of different wavelength beams and how their spectral components spread and recompress in propagation. The inset illustrates the spatial chirp induced on the output of a traditional grating based combiner. (b.) A schematic diagram of the beam waist at the central wavelength component of each channel

Fig. 2
Fig. 2

Proof-of-concept demonstration of CP-SBC. (a) Schematic of the CP-SBC experiment (b) Transmission through a slit vs. wavelength for input beam at various locations for CP-SBC (c) Schematic of traditional SBC experiment (d) corresponding power through a slit for conventional SBC

Fig. 3
Fig. 3

Beam quality and beam brightness comparison between CP-SBC and traditional SBC for experimental parameters shown in Fig. 2.

Fig. 4
Fig. 4

Extremely large bandwidth CP-SBC demonstration. Insets show (a) staircase mirror, (b) fiber coupled multimode diodes, (c) wavelength spectrum of the three diodes, (d) diffraction grating, (e) combined output beam profile, and (f) profile of the beams after the pre-chirp grating illustrating the output from a traditional SBC configuration.

Fig. 5
Fig. 5

Photograph of the packaged laser module while in operation. Insets show various characteristics of the combined output of two single-frequency rod amplifiers: (a) the optical-spectrum-analyzer spectrum, (b) the output pulse profile, (c) the near field profile, and (d) the far field profile.

Metrics