Abstract

We report on high resolution subsurface and material specific differentiation of silica, Au and silica-capped Au nanoparticles using scattering-type scanning near-field optical microscopy (s-SNOM) in the visible (λ=633 nm) and mid-infrared (λ=10.7 μm) frequencies. Strong optical contrast is observed in the visible wavelength, mainly because of the dipolar plasmon resonance of the embedded Au nanoparticles which is absent in the infrared. We show that the use of small tapping amplitude improves the apparent image contrast in nanoparticles by causing increased tip-particle and reduced tip-substrate interactions. Experimental results are in excellent agreement with extended dipole model calculations modified to include the capping layer characterized by its refractive index.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
    [CrossRef]
  2. I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
    [CrossRef]
  3. A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
    [CrossRef]
  4. J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
    [CrossRef] [PubMed]
  5. F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
    [CrossRef]
  6. M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
    [CrossRef]
  7. G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
    [CrossRef]
  8. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
    [CrossRef]
  9. M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
    [CrossRef]
  10. H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
    [CrossRef] [PubMed]
  11. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
    [CrossRef] [PubMed]
  12. R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
    [CrossRef] [PubMed]
  13. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  14. Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
    [CrossRef] [PubMed]
  15. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
    [CrossRef] [PubMed]
  16. A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
    [CrossRef] [PubMed]
  17. Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
    [CrossRef] [PubMed]
  18. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
    [CrossRef] [PubMed]
  19. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
    [CrossRef] [PubMed]
  20. J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
    [CrossRef]
  21. T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
    [CrossRef] [PubMed]
  22. Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).
  23. T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
    [CrossRef] [PubMed]
  24. S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
    [CrossRef]
  25. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [CrossRef] [PubMed]
  26. J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
    [CrossRef] [PubMed]
  27. V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
    [CrossRef]
  28. N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
    [CrossRef]
  29. R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80(1), 25–27 (2002).
    [CrossRef]
  30. G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
    [CrossRef]
  31. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  32. E. W. Palik, Handbook of Optical Constants of Solids (Academic Press, Berlin, 1985).
  33. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [CrossRef] [PubMed]
  34. S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
    [CrossRef] [PubMed]
  35. S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
    [CrossRef]

2011 (1)

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

2010 (2)

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

2009 (3)

S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
[CrossRef] [PubMed]

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

2008 (4)

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
[CrossRef]

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

2007 (3)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[CrossRef] [PubMed]

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

2006 (7)

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[CrossRef] [PubMed]

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

2005 (2)

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[CrossRef]

2004 (4)

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
[CrossRef]

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[CrossRef] [PubMed]

2003 (3)

V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
[CrossRef]

G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
[CrossRef]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

2002 (2)

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80(1), 25–27 (2002).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

2001 (1)

S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
[CrossRef]

2000 (1)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

1996 (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

Abate, Y.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

Ahn, S. H.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

Aizpurua, J.

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

Alivisatos, A. P.

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

Amarie, S.

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
[CrossRef] [PubMed]

Bao, A.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Basiruddin, S. K.

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

Battersby, B. J.

G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
[CrossRef]

Bawendi, M. G.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Böke, M.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Brehm, M.

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

Bründermann, E.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

De, M.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
[CrossRef]

Dong, H. C.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

el-Sayed, M. A.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

Fang, J.

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[CrossRef]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Frangioni, J. V.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Ganz, T.

Gao, H. F.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

García de Abajo, F. J.

Ghosh, P. S.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
[CrossRef]

Gozhenko, V. V.

V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
[CrossRef]

Grechko, L. G.

V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
[CrossRef]

Guckenberger, R.

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Havenith, M.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Hillenbrand, R.

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80(1), 25–27 (2002).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

Hranisavljevic, J.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
[CrossRef]

Huber, A.

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

Jana, N. R.

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
[CrossRef]

Jin, R. C.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

Keilmann, F.

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

S. Amarie, T. Ganz, and F. Keilmann, “Mid-infrared near-field spectroscopy,” Opt. Express 17(24), 21794–21801 (2009).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80(1), 25–27 (2002).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

Kim, S. W.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Kim, Z. H.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[CrossRef] [PubMed]

Lai, H.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Lawrie, G. A.

G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
[CrossRef]

Leone, S. R.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[CrossRef] [PubMed]

Lin, J.

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[CrossRef]

Liu, B.

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

Liu, Z. L.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Liz-Marzan, L. M.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

Matyjaszewski, K.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

Meißner, R.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Mulvaney, P.

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[CrossRef] [PubMed]

Murphy, C. J.

S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
[CrossRef]

Nann, T.

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[CrossRef] [PubMed]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nordlander, P.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Obare, S. O.

S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
[CrossRef]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[CrossRef] [PubMed]

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

Ohnishi, S.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

Perez-Juste, J.

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

Pradhan, N.

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

Rotello, V. M.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
[CrossRef]

Saha, A.

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

Samson, J.-S.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Schwartzberg, A.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

Strasser, D.

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

Tanaka, E.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Tao, C. Y.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Taubner, T.

J. Aizpurua, T. Taubner, F. J. García de Abajo, M. Brehm, and R. Hillenbrand, “Substrate-enhanced infrared near-field spectroscopy,” Opt. Express 16(3), 1529–1545 (2008).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, “Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy,” Opt. Express 13(22), 8893–8899 (2005).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Teng, F.

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

Tian, Z. J.

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

Trau, M.

G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
[CrossRef]

Whites, K. W.

V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
[CrossRef]

Winter, J.

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

Wurtz, G. A.

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
[CrossRef]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

Xiong, G. X.

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

Xu, Z. S.

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

Yang, H.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Yang, Y. M.

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

Yoon, J. A.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

Yu, M.

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[CrossRef]

Zhu, M. Z.

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

Zimmer, J. P.

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

G. A. Lawrie, B. J. Battersby, and M. Trau, “Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological screening,” Adv. Funct. Mater. 13(11), 887–896 (2003).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.) 20(22), 4225–4241 (2008).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

T. Nann and P. Mulvaney, “Single quantum dots in spherical silica particles,” Angew. Chem. Int. Ed. Engl. 43(40), 5393–5396 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

N. Ocelic, A. Huber, and R. Hillenbrand, “Pseudoheterodyne detection for background-free near-field spectroscopy,” Appl. Phys. Lett. 89(10), 101124 (2006).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Material-specific mapping of metal/semiconductor/dielectric nanosystems at 10 nm resolution by backscattering near-field optical microscopy,” Appl. Phys. Lett. 80(1), 25–27 (2002).
[CrossRef]

Catal. Today (1)

F. Teng, Z. J. Tian, G. X. Xiong, and Z. S. Xu, “Preparation of CdS–SiO2 core–shell particles and hollow SiO2 spheres ranging from nanometers to microns in the nonionic reverse microemulsions,” Catal. Today 93–95, 651–657 (2004).
[CrossRef]

Chem. Mater. (2)

M. Yu, J. Lin, and J. Fang, “Silica Spheres Coated with YVO4:Eu3+ Layers via sol−gel process: a simple method to obtain spherical core−shell phosphors,” Chem. Mater. 17(7), 1783–1791 (2005).
[CrossRef]

I. Pastoriza-Santos, J. Perez-Juste, and L. M. Liz-Marzan, “Silica-coating and hydrophobation of CTAB-stabilized gold nanorods,” Chem. Mater. 18(10), 2465–2467 (2006).
[CrossRef]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka, J. V. Frangioni, and M. G. Bawendi, “Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging,” J. Am. Chem. Soc. 128(8), 2526–2527 (2006).
[CrossRef] [PubMed]

H. C. Dong, M. Z. Zhu, J. A. Yoon, H. F. Gao, R. C. Jin, and K. Matyjaszewski, “One-pot synthesis of robust core/shell gold nanoparticles,” J. Am. Chem. Soc. 130(39), 12852–12853 (2008).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J.-S. Samson, R. Meißner, E. Bründermann, M. Böke, J. Winter, and M. Havenith, “Characterization of single diamondlike and polymerlike nanoparticles by midinfrared nanospectroscopy,” J. Appl. Phys. 105(6), 064908 (2009).
[CrossRef]

J. Nanopart. Res. (1)

A. Bao, H. Lai, Y. M. Yang, Z. L. Liu, C. Y. Tao, and H. Yang, “Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles,” J. Nanopart. Res. 12(2), 635–643 (2010).
[CrossRef]

J. Phys. Chem. B (1)

Z. H. Kim and S. R. Leone, “High-resolution apertureless near-field optical imaging using gold nanosphere probes,” J. Phys. Chem. B 110(40), 19804–19809 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

S. K. Basiruddin, A. Saha, N. Pradhan, and N. R. Jana, “Advances in coating chemistry in deriving soluble functional nanoparticle,” J. Phys. Chem. C 114(25), 11009–11017 (2010).
[CrossRef]

Nano Lett. (6)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Material-specific infrared recognition of single sub-10 nm particles by substrate-enhanced scattering-type near-field microscopy,” Nano Lett. 7(10), 3177–3181 (2007).
[CrossRef] [PubMed]

Z. H. Kim, S. H. Ahn, B. Liu, and S. R. Leone, “Nanometer-scale dielectric imaging of semiconductor nanoparticles: size-dependent dipolar coupling and contrast reversal,” Nano Lett. 7(8), 2258–2262 (2007).
[CrossRef] [PubMed]

S. O. Obare, N. R. Jana, and C. J. Murphy, “Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes,” Nano Lett. 1(11), 601–603 (2001).
[CrossRef]

G. P. Wiederrecht, G. A. Wurtz, and J. Hranisavljevic, “Coherent coupling of molecular excitons to electronic polarizations of noble metal nanoparticles,” Nano Lett. 4(11), 2121–2125 (2004).
[CrossRef]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, “Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution,” Nano Lett. 6(7), 1307–1310 (2006).
[CrossRef] [PubMed]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Phil. Trans. R. Soc. Lond. A (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Phil. Trans. R. Soc. Lond. A 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Phys. Lett. (1)

Y. Abate, A. Schwartzberg, D. Strasser, and S. R. Leone, “Chem. “Nanometer-scale size dependent imaging of cetyl trimethyl ammonium bromide (CTAB) capped and uncapped gold nanoparticles by apertureless near-field optical microscopy,” Phys. Lett. 474, 146–152 (2009).

Phys. Rev. B (2)

V. V. Gozhenko, L. G. Grechko, and K. W. Whites, “Electrodynamics of spatial clusters of spheres: Substrate effects,” Phys. Rev. B 68(12), 125422 (2003).
[CrossRef]

S. Amarie and F. Keilmann, “Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy,” Phys. Rev. B 83(4), 045404 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

R. Hillenbrand and F. Keilmann, “Complex optical constants on a subwavelength scale,” Phys. Rev. Lett. 85(14), 3029–3032 (2000).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of single-walled carbon nanotubes,” Phys. Rev. Lett. 90(9), 095503 (2003).
[CrossRef] [PubMed]

A. Cvitkovic, N. Ocelic, J. Aizpurua, R. Guckenberger, and R. Hillenbrand, “Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap,” Phys. Rev. Lett. 97(6), 060801 (2006).
[CrossRef] [PubMed]

Science (1)

A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[CrossRef]

Other (1)

E. W. Palik, Handbook of Optical Constants of Solids (Academic Press, Berlin, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of the experimental setup showing optical beam paths of the s-SNOM for visible (left side of tip) and infrared frequencies (right side of tip). M = mirror, OI = optical isolator, BE = beam expander, and BS = beam splitter.

Fig. 2
Fig. 2

Transmission electron microscope (TEM) images and size statistics for monodisperse nanoparticles. (a-b) Silica-capped AuNPs, showing uniformity of shape and thickness of the silica capping layer and (c-d) silica nanoparticles. N is the number of particles measured.

Fig. 3
Fig. 3

Near-field images of a mixture of 3 types of nanoparticles: silica, Au, and silica-capped AuNPs absorbed on a Si substrate. (a) AFM topographic image of the mixture and (b) third harmonic s3 near field amplitude image. (c-d) High resolution zoom in scan results of the 3 particle types shown in green circle in (a) in a 500 nm x 500 nm area, (c) topography, and (d) third harmonic s3 near-field amplitude. (e) Line profiles of the topography of nanoparticles (red and blue dashed lines) showing similar height of the two particles. (f) Different optical signal line profiles for the two particles shown in red and blue dashed lines. Amplitude signal line profiles shown in (f) are normalized to the signal of a Si substrate.

Fig. 4
Fig. 4

Pixel-by-pixel correlation of measured near-field third harmonic signal contrast as a function of the topographic pixel height at 633 nm wavelength recorded for two samples, pure silica (blue data points) and silica-capped AuNPs (red data points) adsorbed on a Si substrate. Signal values on Si substrate are used to normalize all optical data.

Fig. 5
Fig. 5

Calculated results of the normalized optical signals for silica-capped AuNPs (dashed line) and silica nanoparticles (solid line) as a function of particle height. Superimposed on the theoretical curves are experimental signal average values of pixels near the center of particles.

Fig. 6
Fig. 6

(a) Pixel-by-pixel correlation of measured near-field second harmonic signal s2 as a function of the topographic pixel height at λ=10.7 µm wavelength recorded for two samples, silica (blue data points) and silica-capped AuNPs (red data points) adsorbed on a Si substrate. (b) Calculated results of the normalized optical signals for silica-capped AuNPs (dashed line) and silica nanoparticles (solid line) as a function of particle height. Superimposed on the theoretical curves are shown experimental signal average values of pixels near the center of particles.

Fig. 7
Fig. 7

Identification of particles based on their near-field amplitude contrast. (a) Topography of a mixed sample (b) Near-field amplitude contrast (c) Experimental signal average values of pixels near the center of particles red (capped), blue (uncapped) (d) Particles labeled according to their material contrast as capped (red) and uncapped (blue).

Fig. 8
Fig. 8

Third harmonic near-field amplitude signals versus tapping amplitude measured at λ=633 nm. Red dots represent data points on silica-capped Au and blue dots on pure silica nanoparticles. Signal values on Si substrate are used to normalize all optical data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

  ε c =( ε 2 ε m ) ( ε 1 +2 ε 2 )+2( ε 1 ε 2 ) ( r 1 r 2 ) 3 ( ε 1 +2 ε 2 )( ε 1 ε 2 ) ( r 1 r 2 ) 3

Metrics