Abstract

We introduce the Standing Wave Optical Line Trap (SWOLT) as a novel tool for precise optical manipulation and long-range transport of nano-scale objects at low laser power. We show that positioning and transport along the trap can be achieved by controlling the lateral component of the scattering force while the confinement of the particles by the gradient force remains unaffected. Multiple gold nanoparticles with a diameter of 100nm were trapped at a power density 3 times smaller than previously reported while their transverse fluctuations remained sufficiently small (±36nm) to maintain the order of the particles. The SWOLT opens new doors for sorting, mixing, and assembly of synthetic and biological nanoparticles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  3. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994).
    [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [CrossRef] [PubMed]
  5. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]
  6. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
    [CrossRef]
  7. A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
    [CrossRef]
  8. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
    [CrossRef]
  9. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
    [CrossRef] [PubMed]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef] [PubMed]
  11. J. Glückstad, “Sorting particles with light,” Nature Materials 3, 9–10 (2004).
    [CrossRef] [PubMed]
  12. M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
    [CrossRef]
  13. Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
    [CrossRef]
  14. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Mashuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
    [CrossRef] [PubMed]
  15. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
    [CrossRef] [PubMed]
  16. L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
    [CrossRef]
  17. C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
    [CrossRef]
  18. R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
    [CrossRef] [PubMed]
  19. B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
    [CrossRef]
  20. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004).
    [CrossRef] [PubMed]
  21. R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
    [CrossRef] [PubMed]
  22. S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005).
    [CrossRef]
  23. F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
    [CrossRef]
  24. M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006).
    [CrossRef] [PubMed]
  25. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006).
    [CrossRef] [PubMed]
  26. A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
    [CrossRef] [PubMed]
  27. D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003).
    [CrossRef] [PubMed]
  28. T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).
  29. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
    [CrossRef]
  30. T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
    [CrossRef]
  31. M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
    [CrossRef]
  32. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
    [CrossRef]
  33. T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
    [CrossRef]
  34. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
    [CrossRef]
  35. M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
    [CrossRef]
  36. T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
    [CrossRef]
  37. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
    [CrossRef]
  38. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999).
    [CrossRef]
  39. P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
    [CrossRef]
  40. A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001).
    [CrossRef]
  41. P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
    [CrossRef]
  42. P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
    [CrossRef]
  43. H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
    [CrossRef]
  44. S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
    [CrossRef]
  45. M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
    [CrossRef] [PubMed]
  46. R. Bowman, A. Jesacher, G. Thalhammer, G. Gibson, M. Ritsch-Marte, and M. Padgett, “Position clamping in a holographic counterpropagating optical trap,” Opt. Express 19, 9908–9914 (2011).
    [CrossRef] [PubMed]
  47. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
    [CrossRef] [PubMed]
  48. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
    [CrossRef] [PubMed]
  49. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
    [CrossRef] [PubMed]
  50. S.-U. Hwang and Y.-G. Lee, “Simulation of an oil immersion objective lens: a simplified ray-optics model considering Abbe’s sine condition,” Opt. Express 16, 21170–83 (2008).
    [CrossRef] [PubMed]
  51. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., 1965).
  52. M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
    [CrossRef] [PubMed]
  53. S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
    [CrossRef]
  54. K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
    [CrossRef]
  55. T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
    [CrossRef]
  56. O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
    [CrossRef] [PubMed]

2011 (3)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[CrossRef] [PubMed]

R. Bowman, A. Jesacher, G. Thalhammer, G. Gibson, M. Ritsch-Marte, and M. Padgett, “Position clamping in a holographic counterpropagating optical trap,” Opt. Express 19, 9908–9914 (2011).
[CrossRef] [PubMed]

2010 (4)

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
[CrossRef] [PubMed]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[CrossRef]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

2009 (2)

M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
[CrossRef] [PubMed]

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

2008 (4)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[CrossRef]

S.-U. Hwang and Y.-G. Lee, “Simulation of an oil immersion objective lens: a simplified ray-optics model considering Abbe’s sine condition,” Opt. Express 16, 21170–83 (2008).
[CrossRef] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

2007 (2)

Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
[CrossRef]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

2006 (7)

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[CrossRef]

M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006).
[CrossRef] [PubMed]

Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006).
[CrossRef] [PubMed]

2005 (4)

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005).
[CrossRef]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

2004 (7)

R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
[CrossRef] [PubMed]

J. Glückstad, “Sorting particles with light,” Nature Materials 3, 9–10 (2004).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004).
[CrossRef] [PubMed]

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
[CrossRef]

2003 (6)

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef] [PubMed]

B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
[CrossRef]

2002 (3)

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
[CrossRef]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[CrossRef]

2001 (2)

A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001).
[CrossRef]

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

2000 (1)

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

1999 (1)

1998 (1)

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

1995 (2)

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994).
[CrossRef]

1991 (1)

1989 (1)

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (1)

Andrews, D. L.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

Andrews, J. T.

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
[CrossRef]

Applegate, R. W.

Arabale, G. V.

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Arzola, A. V.

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[CrossRef] [PubMed]

Ashkin, A.

Bernet, S.

Bettiol, A. A.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994).
[CrossRef]

Bouchal, Z.

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

Bourdieu, L. S.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Bowman, R.

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., 1965).

Brzobohatý, O.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

Burns, M. M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Cheong, F. C.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Chu, S.

Cižmár, T.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
[CrossRef]

Dasgupta, R.

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef] [PubMed]

Dávila Romero, L. C.

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

Dholakia, K.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[CrossRef]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
[CrossRef]

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
[CrossRef]

Dziedzic, J. M.

Faucheux, L. P.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Florin, E.-L.

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001).
[CrossRef]

Fournier, J.-M.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Fujiwara, H.

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

Gajraj, A.

R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
[CrossRef] [PubMed]

Garcés-Chávez, V.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

D. McGloin, V. Garcés-Chávez, and K. Dholakia, “Interfering Bessel beams for optical micromanipulation,” Opt. Lett. 28, 657–659 (2003).
[CrossRef] [PubMed]

Garcéz-Chávez, V.

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

Gibson, G.

Glückstad, J.

J. Glückstad, “Sorting particles with light,” Nature Materials 3, 9–10 (2004).
[CrossRef] [PubMed]

Golovchenko, J. A.

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Gong, T.

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

Grier, D. G.

Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
[CrossRef]

Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006).
[CrossRef] [PubMed]

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
[CrossRef]

Gupta, P. K.

M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006).
[CrossRef] [PubMed]

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005).
[CrossRef]

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef] [PubMed]

Haist, T.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., 1965).

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

He, L.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Hermerschmidt, A.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Hotta, J.

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

Hwang, S.-U.

Jákl, P.

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

Jesacher, A.

Ježek, J.

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

Jonáš, A.

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[CrossRef]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[CrossRef]

A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001).
[CrossRef]

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
[CrossRef]

Kaplan, P. D.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Karásek, V.

Khan, M.

Kitamura, N.

Kollárová, V.

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

Korda, P. T.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
[CrossRef]

Koshioka, M.

Ladavac, K.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
[CrossRef]

Lee, W. M.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

Lee, Y.-G.

Libchaber, A.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

Libchaber, A. J.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

Liesfeld, B.

B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
[CrossRef]

Liška, M.

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Marchington, R. F.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

Marr, D. W. M.

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004).
[CrossRef] [PubMed]

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

Mashuhara, H.

Mateos, J. L.

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[CrossRef] [PubMed]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
[CrossRef]

McGloin, D.

Meiners, J. C.

B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
[CrossRef]

Meiners, J.-C.

R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
[CrossRef] [PubMed]

Metzger, N. K.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

Mio, C.

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

Misawa, H.

Miyamoto, Y.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Mohanty, S. K.

M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006).
[CrossRef] [PubMed]

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005).
[CrossRef]

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
[CrossRef]

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef] [PubMed]

Nambiar, R.

R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
[CrossRef] [PubMed]

B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Oakey, J.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

Osten, W.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Padgett, M.

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
[CrossRef]

Pitzek, M.

Raol, C. N. R.

Reece, P. J.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

Reihani, S. N. S.

Ritsch-Marte, M.

Roichman, Y.

Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
[CrossRef]

Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006).
[CrossRef] [PubMed]

Sasaki, K.

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Mashuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
[CrossRef] [PubMed]

Šerý, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

Shao, P.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Šiler, M.

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[CrossRef]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
[CrossRef]

Sood, A. K.

Sow, C. H.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Squier, J.

Šrámek, L.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

Steiger, R.

Stolovitzky, G.

L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994).
[CrossRef]

Takasaki, H.

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

Taylor, M. B.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
[CrossRef]

Terray, A.

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

Thalhammer, G.

van Kan, J. A.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Vestad, T.

Vijaymohanan, K.

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Volke-Sepúlveda, K.

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[CrossRef] [PubMed]

Warber, M.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Watt, F.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Wee, A. T. S.

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

Wong, V.

Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
[CrossRef]

Zemánek, P.

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[CrossRef]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, “Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave,” J. Opt. Soc. Am. A 19, 1025–1034 (2002).
[CrossRef]

A. Jonáš, P. Zemánek, and E.-L. Florin, “Single-beam trapping in front of reflective surfaces,” Opt. Lett. 26, 1466–8 (2001).
[CrossRef]

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–50 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
[CrossRef]

Zwick, S.

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

Annu. Rev. Bioph. Biom. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Bioph. Biom. 23, 247–285 (1994).
[CrossRef]

Appl. Phys. B (4)

S. K. Mohanty and P. K. Gupta, “Transport of microscopic objects using asymmetric transverse optical gradient force,” Appl. Phys. B 81, 159–162 (2005).
[CrossRef]

F. C. Cheong, C. H. Sow, A. T. S. Wee, P. Shao, A. A. Bettiol, J. A. van Kan, and F. Watt, “Optical travelator: transport and dynamic sorting of colloidal microspheres with an asymmetrical line optical tweezers.” Appl. Phys. B 83, 121–125 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý, and P. Zemánek, “Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery,” Appl. Phys. B 84, 157–165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, “An optical nanotrap array movable over a milimetre range,” Appl. Phys. B 84, 197–203 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

H. Fujiwara, H. Takasaki, J. Hotta, and K. Sasaki, “Observation of the discrete transition of optically trapped particle position in the vicinity of an interface,” Appl. Phys. Lett. 84, 13 (2004).
[CrossRef]

Biophys. J (1)

R. Nambiar, A. Gajraj, and J.-C. Meiners, “All-optical constant-force laser tweezers,” Biophys. J 87, 1972–80 (2004).
[CrossRef] [PubMed]

Biotechnol. Lett. (1)

R. Dasgupta, S. K. Mohanty, and P. K. Gupta, “Controlled rotation of biological microscopic objects using optical line tweezers,” Biotechnol. Lett. 25, 1625–1628 (2003).
[CrossRef] [PubMed]

Electrophoresis (1)

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).
[CrossRef]

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2, 021875 (2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Zwick, T. Haist, Y. Miyamoto, L. He, M. Warber, A. Hermerschmidt, and W. Osten, “Holographic twin traps,” J. Opt. A: Pure Appl. Opt. 11, 034011 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. B: At. Mol. Opt. Phys. (1)

T. Čižmár, L. C. Dávila Romero, K. Dholakia, and D. L. Andrews, “Multiple optical trapping and binding: new routes to self-assembly,” J. Phys. B: At. Mol. Opt. Phys. 43, 102001 (2010).
[CrossRef]

Laser Phys. Lett. (1)

T. Čižmár, O. Brzobohatý, K. Dholakia, and P. Zemánek, “The holographic optical micro-manipulation system based on counter-propagating beams,” Laser Phys. Lett. 8, 50–56 (2011).
[CrossRef]

Nano. Lett. (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano. Lett. 5, 1937–1942 (2005).
[CrossRef] [PubMed]

Nat. Protoc. (1)

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence microscope.” Nat. Protoc. 23226–3238 (2007).
[CrossRef] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef] [PubMed]

Nature Materials (1)

J. Glückstad, “Sorting particles with light,” Nature Materials 3, 9–10 (2004).
[CrossRef] [PubMed]

New J. Phys. (1)

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination,” New J. Phys. 10, 113010 (2008).
[CrossRef]

Opt. Commun. (2)

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273–285 (1998).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šerý, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401–412 (2003).
[CrossRef]

Opt. Express (8)

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, “Optical binding between dielectric particles,” Opt. Express 12, 2749–2756 (2004).
[CrossRef]

R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. W. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12, 4390–4398 (2004).
[CrossRef] [PubMed]

M. Khan, A. K. Sood, S. K. Mohanty, P. K. Gupta, G. V. Arabale, K. Vijaymohanan, and C. N. R. Raol, “Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium,” Opt. Express 14, 424–429 (2006).
[CrossRef] [PubMed]

S.-U. Hwang and Y.-G. Lee, “Simulation of an oil immersion objective lens: a simplified ray-optics model considering Abbe’s sine condition,” Opt. Express 16, 21170–83 (2008).
[CrossRef] [PubMed]

M. Pitzek, R. Steiger, G. Thalhammer, S. Bernet, and M. Ritsch-Marte, “Optical mirror trap with a large field of view,” Opt. Express 17, 19414–19423 (2009).
[CrossRef] [PubMed]

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
[CrossRef] [PubMed]

O. Brzobohatý, T. Čižmár, V. Karásek, M. Šiler, K. Dholakia, and P. Zemánek, “Experimental and theoretical determination of optical binding forces,” Opt. Express 18, 25389–25402 (2010).
[CrossRef] [PubMed]

R. Bowman, A. Jesacher, G. Thalhammer, G. Gibson, M. Ritsch-Marte, and M. Padgett, “Position clamping in a holographic counterpropagating optical trap,” Opt. Express 19, 9908–9914 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 1–6 (2006).
[CrossRef]

Phys. Rev. E (4)

M. Pelton, K. Ladavac, and D. G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 1–10 (2004).
[CrossRef]

Y. Roichman, V. Wong, and D. G. Grier, “Colloidal transport through optical tweezer arrays,” Phys. Rev. E 75, 1–4 (2007).
[CrossRef]

L. P. Faucheux, G. Stolovitzky, and A. Libchaber, “Periodic forcing of a Brownian particle,” Phys. Rev. E 51, 5239–5250 (1995).
[CrossRef]

B. Liesfeld, R. Nambiar, and J. C. Meiners, “Particle transport in asymmetric scanning-line optical tweezers,” Phys. Rev. E 68, 1–6 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 1–4 (2002).
[CrossRef]

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical thermal ratchet,” Phys. Rev. Lett. 74, 1504–1507 (1995).
[CrossRef] [PubMed]

A. V. Arzola, K. Volke-Sepúlveda, and J. L. Mateos, “Experimental control of transport and current reversals in a deterministic optical rocking ratchet,” Phys. Rev. Lett. 106, 168104 (2011).
[CrossRef] [PubMed]

M. M. Burns, J.-M. Fournier, and J. A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233–1236 (1989).
[CrossRef] [PubMed]

Proc. SPIE (3)

P. Jákl, A. Jonáš, E.-L. Florin, and P. Zemánek, “Comparison of the single beam and the standing wave trap stiffnesses,” Proc. SPIE 4356, 347–352 (2001).
[CrossRef]

T. Čižmár, V. Kollárová, M. Šiler, P. Jákl, Z. Bouchal, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, “Non-diffracting beam synthesis used for optical trapping and delivery of sub-micron objects,” Proc. SPIE 6195, 619507 (2006).
[CrossRef]

T. Čižmár, V. Garcéz-Chávez, K. Dholakia, and P. Zemánek, “Optical conveyor belt based on Bessel beams,” Proc. SPIE 5930, 231–237 (2005).

Rev. Mod. Phys. (1)

K. Dholakia and P. Zemánek, “Colloquium: Gripped by light: Optical binding,” Rev. Mod. Phys. 82, 1767–1791 (2010).
[CrossRef]

Rev. Sci. Instrum. (2)

C. Mio, T. Gong, A. Terray, and D. W. M. Marr, “Design of a scanning laser optical trap for multiparticle manipulation,” Rev. Sci. Instrum. 71, 2196–2200 (2000).
[CrossRef]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).
[CrossRef] [PubMed]

Other (2)

M. Šiler, T. Čižmár, A. Jonáš, and P. Zemánek, “Delivery of multiparticle chains by an optical conveyor belt,” Proc. SPIE7138, 713822 (2008).
[CrossRef]

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., 1965).

Supplementary Material (2)

» Media 1: MOV (3964 KB)     
» Media 2: MOV (3974 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of a standing wave optical line trap. The design is based on a standard single beam trap design [5, 47], but with two additions. A dichroic coverslip is used as part of the sample chamber to generate a standing wave optical trap. The cylinder lens is used to stretch the trapping volume into a line, and translation of the cylinder lens generates lateral components of scattering force which drive transport along the line.

Fig. 2
Fig. 2

Trapping and alignment of nanoparticles in the SWOLT. Gold particles 100nm in diameter were stably trapped and aligned in the SWOLT with 70mW of laser power in the focal plane. Particles are imaged using dark-field microscopy. The particle second from the left is trapped in the second antinode of the standing wave and thus is out of focus.

Fig. 3
Fig. 3

Characterization of the SWOLT’s trapping potential. a) Position histogram of a 500nm diameter polystyrene bead diffusing in the SWOLT for 117 minutes (1.4 ×105 data points). The base image shows the full 2D histogram data. The black curves are individual line profiles of histogram data for a given x-position averaged over ±65nm. The inset shows a sample DIC image used to track the bead. The yellow line indicates the path of the center of the particle over 30sec. b) The transverse spring constant ky of the trap at different positions along the trap length. Values are normalized to the value at x = 0, ky(0) = 2.6 ± 0.2 pN/μm. The trapping power in the focal plane was about 70mW.

Fig. 4
Fig. 4

Manipulation of the average particle position in the SWOLT by varying the lateral component of the scattering force. a) Ray optics diagram illustrating how the lateral component of the scattering force ( F net s) is generated by shifting the cylinder lens along the xCL-direction. b) The average position of a trapped 500nm diameter polystyrene particle in the SWOLT is shown for different positions of the cylinder lens. The value xeqi = 0 corresponds to a selected pixel on the CCD camera near the x-position of the intensity maximum when δxCL = 0. The vertical error bars represent the standard deviation of the position. The solid red line was fit to the data using the model for the SWOLT described in the text (Eq. (9)). The incident angle (θm) was calculated from cylinder lens position (δxCL) using Eq. (6). The inset illustrates an example of the particle position within the trapping volume’s intensity profile. Parameters used: The diameter of the back aperture of the objective lens (D = 4277μm) as well as the numerical aperture (NA = 1.3) were given by the manufacturer; the refractive index of the medium, water, is known (nm = 1.33); the longitudinal spring constant (kx = 25 fN/μm) was measured as described in the text; and the magnitude of the incident scattering force at x = 0 ( | F 00 s | = 0.98 ± 0.03 pN) was given from the fit. This value is near calculations of scattering force magnitude on a Rayleigh particle using equation 1 in the work done by Ashkin et.al. [1] which yields 1.17pN. We assume the parameters of a 500nm diameter polystyrene particle (np = 1.55) trapped in water by a 1064nm laser (λ = 800nm in water). The intensity of the incident beam at x = y = 0, I0, can be calculated from the total power and the x and y widths of the 2D-Gaussian beam profile by I0 = P/(σxσyπ) = 70mW/(15μm ·0.5μm ·π) = 3.0mW /μm2.

Fig. 5
Fig. 5

Intensity profile of the SWOLT as a function of the position of the cylinder lens. a) The intensity profile of the trap is imaged directly to provide the gradient force component of the optical forces acting on the particles. No particles are in the trap. Each column of pixels represents the intensity profile of the trap along its length averaged over ±250nm from the longitudinal axis (y = 0). Profiles were measured as the cylinder lens was translated in steps of 50μm. b) Normalized longitudinal stiffness (kx/kx(δxCL = 0)) of the SWOLT as function of the cylinder lens position. The stiffness was calculated from the intensity distribution (see text).

Fig. 6
Fig. 6

Definition of the parameters used to calculate the incident angle of the laser light θm as a function of cylinder lens position δxCL

Fig. 7
Fig. 7

Transverse stiffness of the SWOLT measured at different equilibrium positions along the trap. Using the lateral scattering force as shown in Fig. 4(a), a 500nm diameter polystyrene particle was pushed to positions away from the position of highest intensity. The transverse stiffness ky was measured concurrently with equilibrium position data shown in Fig. 4(b). A Gaussian profile is drawn to guide the eye.

Fig. 8
Fig. 8

Measurement of the optical force component along the long axis of the SWOLT: F x Total ( x ) = F net s ( x ) + F x g ( x ). To measure the forces acting along the entire length of the trap, particle velocities were measured. a) Experimental procedure. Particles diffuse one-by-one into the trap near one of the ends. A video is recorded of the particle being transported to its rest position which depends on the incident angle of the trapping beam θm. The positions and velocities of the particles are determined by video particle tracking. b) The average velocity of the particle at each position in the trap is shown for different angles of incidence (θm). The right axis shows the corresponding optical forces. The solid curves are fits from the model (Eq. (10)) where θm is the only free parameter. The remaining parameters are fixed to known, measured, or estimated values. | F 00 s | = 1 p N, kx = 25 fN/μm, and D = 4277μm as described in Fig. 4. The particle radius (a = 250nm) is given by the manufacturer; the width of the Gaussian intensity profile (σx = 15.5μm) is measured from images of the intensity profile at the coverslip surface; the viscosity of water (η = 1.0 fNs/μm2) is known; and the viscous drag correction factor (ɛ = 3) was estimated for a particle moving near a surface [51]. Though the particles used here are large and are trapped near the surface, they do not make contact due to repulsive electrostatic forces. This occurs because both the glass surface and the carboxylated polystyrene particles naturally have a negative charge, and the Debye length in deionized water is very long compared to the glass-particle separation distance. Videos were recorded at a rate of 80 fps. The results of at least 16 particles were averaged for each measurement. The error bars represent the standard error of the mean of these measurements. All measurements were done using 70mW of laser power in the sample plane.

Fig. 9
Fig. 9

Generation of axially symmetric scattering forces by translating the cylinder lens along the optical axis. a) Generation of radially outward pointing scattering forces by a diverging beam. b) Generation of radially inward pointing scattering forces by a converging beam.

Fig. 10
Fig. 10

Positioning of particles with radially symmetric scattering forces. a) Particles are pushed away from the center of the trap by the lateral scattering forces generated by a diverging beam (δzCL = 60mm). b) Particles move closer to the center of SWOLT when the laser light is focused on the back focal plane of the objective lens (δzCL = 0) and the net scattering force is reduced to 0. c) When the cylinder lens is moved away from the objective lens (δzCL = −140mm) thus generating a converging beam, the particles are pressed closer together. Inset: Propagation of the light rays at the dichroic coverslip surface.

Fig. 11
Fig. 11

Single frame excerpts from video recordings of continuous transport in a SWOLT. Polystyrene particles are continuously transported by fluid flow into the SWOLT which lies perpendicular to the flow. The particles are then captured by the SWOLT and transported by the lateral scattering force towards the end(s) of the trap where the optical gradient force is much weaker. There, the drag force from the fluid flow is strong enough to overcome the gradient force and push the particle out of the trap. a) Single direction transport as illustrated in Fig. 4(b) with δxCL = −500μm. The SWOLT is tilted slightly towards the fluid flow to show that the particle transport is not due to drag forces ( Media 1). b) Bidirectional outward transport as illustrated in Fig. 9(a) with δzCL = 100mm ( Media 2). The figure and media dimensions are 58μm by 32μm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F net s = 2 | F 0 s | sin ( θ m ) x ^
F net s = 2 | F 00 s | sin ( θ m ) e x 2 σ x 2 x ^
n oil sin θ oil = δ x CL f
n oil sin α oil = D 2 f
n oil sin α oil = NA
sin θ m = 2 NA δ x CL D n m
F net s ( x , δ x CL ) = 4 | F 00 s | NA δ x C L D n m e x 2 σ x 2 x ^
F x g ( x ) = k x x e x 2 σ x 2 x ^
x eqi ( δ x CL ) = 4 | F 00 s | NA δ x CL k x D n m x ^
v x ( x , θ m ) = 1 6 π ɛ η a e x 2 σ x 2 [ 2 | F 00 s | sin ( θ m ) + k x x ] x ^

Metrics