Abstract

The effects of temperature, pump power and excitation wavelength on near-infrared photoluminescence from Bi-doped multi-component germanate glasses are presented. Compared to conventional silica/silicate matrices, the examined material exhibits superior resistance to thermal quenching and less pronounced excited state absorption for pumping at 808 nm. It is shown that by selecting the optimal excitation wavelength, photoemission can be initiated from multiple active centers in parallel, resulting in an emission bandwidth (full width at half maximum) of more than 370 nm. Er3+/Bi co-doping is presented as an effective means to significantly enhance emission intensity around 1.5 μm by suppressing the typical Er3+-related red-to-green upconversion. Besides its relevance for Bi-doped materials, this also indicates a new route towards improving the performance of Er-based optical devices. The mechanism of Er3+→Bi energy transfer is examined in detail. Adjusting the molar ratio between both species provides an effective tool for tuning the emission scheme and further increasing emission bandwidth.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
    [CrossRef] [PubMed]
  2. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
    [CrossRef]
  3. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  4. S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
    [CrossRef] [PubMed]
  5. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  6. I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
    [CrossRef]
  7. E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
    [CrossRef]
  8. V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
    [CrossRef]
  9. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
    [CrossRef]
  10. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [CrossRef] [PubMed]
  11. I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
    [CrossRef]
  12. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
    [CrossRef]
  13. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
    [CrossRef] [PubMed]
  14. M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
    [CrossRef]
  15. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  16. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
    [CrossRef]
  17. G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
    [CrossRef]
  18. H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
    [CrossRef]
  19. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
    [CrossRef]
  20. M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
    [CrossRef]
  21. X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
    [CrossRef]
  22. J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
    [CrossRef]
  23. N. Dai, B. Xu, Z. Jiang, J. Peng, H. Li, H. Luan, L. Yang, and J. Li, “Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses,” Opt. Express 18(18), 18642–18648 (2010).
    [CrossRef] [PubMed]
  24. J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
    [CrossRef] [PubMed]
  25. B. Zhou, H. Lin, B. Chen, and E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
    [CrossRef] [PubMed]
  26. Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
    [CrossRef]
  27. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
    [CrossRef]
  28. M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
    [CrossRef] [PubMed]
  29. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
    [CrossRef] [PubMed]
  30. C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
    [CrossRef]
  31. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
    [CrossRef] [PubMed]
  32. M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
    [CrossRef]
  33. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett. 36(2), 166–168 (2011).
    [CrossRef] [PubMed]
  34. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
    [CrossRef] [PubMed]

2011 (6)

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[CrossRef] [PubMed]

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

B. Zhou, H. Lin, B. Chen, and E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett. 36(2), 166–168 (2011).
[CrossRef] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[CrossRef] [PubMed]

2010 (4)

N. Dai, B. Xu, Z. Jiang, J. Peng, H. Li, H. Luan, L. Yang, and J. Li, “Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses,” Opt. Express 18(18), 18642–18648 (2010).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
[CrossRef]

2009 (7)

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

2008 (4)

M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
[CrossRef] [PubMed]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

2007 (3)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

2006 (3)

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
[CrossRef] [PubMed]

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

2005 (5)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

2004 (1)

1989 (1)

C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
[CrossRef]

Akada, T.

Bigot, L.

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[CrossRef]

Bufetov, I.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Bufetov, I. A.

Bulatov, L. I.

Chen, B.

Chen, D.

Chi, G.

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

Dai, N.

Dianov, E.

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Dianov, E. M.

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

Dong, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

Dvoyrin, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Dvoyrin, V. V.

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

Firstov, S. V.

Firstova, E. G.

Fujimoto, Y.

Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
[CrossRef]

Guryanov, A. N.

Gur'yanov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Hewak, D. W.

Hilbert, M.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Hu, L.

Hughes, M.

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

Hughes, M. A.

Jha, A.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[CrossRef]

Jiang, X.

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Jiang, Z.

Kalita, M. P.

Khopin, V. F.

Kustov, E. F.

Kuwada, Y.

Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
[CrossRef]

Lakshminarayana, G.

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Levchenko, A. E.

Li, H.

Li, J.

Lin, H.

Liu, X.

López, P.

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Lu, K.

C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
[CrossRef]

Luan, H.

Mashinsky, V.

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Mashinsky, V. M.

Melkumov, M. A.

Meng, X.

Nakatsuka, M.

Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
[CrossRef]

Ohishi, Y.

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Peng, J.

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Pun, E. Y.

Qiu, J.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Qiu, J. R.

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Razdobreev, I.

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[CrossRef]

Ruan, J.

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Sahu, J.

Schmidt, M. A.

Schwefel, H. G.

Semenov, S. L.

Shubin, A. V.

Song, Z.

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

Sprenger, B.

Suzuki, T.

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth-doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Tian, Y.

Umnikov, A.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Umnikov, A. A.

Vel’miskin, V. V.

Wang, C.

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

Wang, X.

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

Wondraczek, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

Wu, B.

Wu, E.

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Xia, H.

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

Xin, C.

C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
[CrossRef]

Xu, B.

Xu, R.

Yagin, Z.

C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
[CrossRef]

Yang, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Yang, I.

Yang, L.

Yashkov, M.

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Yashkov, M. V.

Yoo, S.

Zeng, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

Zeng, H. P.

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Zhang, J.

Zhang, L.

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[CrossRef] [PubMed]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, Q.

Zhao, Q.

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[CrossRef]

Zhou, B.

Zhou, D.

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

Zhou, S.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

Zhou, S. F.

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

Zhu, B.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Zhu, C.

Zollfrank, C.

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

H. Xia and X. Wang, “Near infrared broadband emission from Bi5+-doped Al2O3-GeO2-X (X=Na2O,BaO,Y2O3) glasses,” Appl. Phys. Lett. 89, 051917 (2006).
[CrossRef]

J. Ruan, E. Wu, H. P. Zeng, S. F. Zhou, G. Lakshminarayana, and J. R. Qiu, “Enhanced broadband near-infrared luminescence and optical amplification in Yb-Bi codoped phosphate glasses,” Appl. Phys. Lett. 92(10), 101121 (2008).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

M. Peng, X. Meng, J. Qiu, Q. Zhao, and C. Zhu, “GeO2: Bi, M (M = Ga, B) glasses with super-wide infrared luminescence,” Chem. Phys. Lett. 403(4-6), 410–414 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Dvoyrin, V. Mashinsky, and E. Dianov, “Efficient Bismuth-Doped Fiber Lasers,” IEEE J. Quantum Electron. 44(9), 834–840 (2008).
[CrossRef]

J. Mater. Chem. (1)

M. Peng and L. Wondraczek, “Bismuth-doped oxide glasses as potential solar spectral converters and concentrators,” J. Mater. Chem. 19(5), 627–630 (2009).
[CrossRef]

J. Non-Cryst. Solids (3)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Cryst. Solids 357(11-13), 2241–2245 (2011).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

C. Xin, K. Lu, and Z. Yagin, “Short-range structure of Na2O-Al2O3-GeO2 glasses by EXAFS analysis,” J. Non-Cryst. Solids 112(1-3), 96–100 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys. Condens. Matter 21(28), 285106 (2009).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

Y. Kuwada, Y. Fujimoto, and M. Nakatsuka, “Ultrawideband light emission from bismuth and erbium doped silica,” Jpn. J. Appl. Phys. 46(4A), 1531–1532 (2007).
[CrossRef]

Laser Phys. Lett. (1)

I. Bufetov and E. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett. 6(7), 487–504 (2009).
[CrossRef]

Opt. Express (7)

M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Broadband infrared luminescence from Li2O-Al2O3-ZnO-SiO2 glasses doped with Bi2O3.,” Opt. Express 13(18), 6892–6898 (2005).
[CrossRef] [PubMed]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from Bi-doped Ba2P2O7 crystals: insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010).
[CrossRef] [PubMed]

N. Dai, B. Xu, Z. Jiang, J. Peng, H. Li, H. Luan, L. Yang, and J. Li, “Effect of Yb3+ concentration on the broadband emission intensity and peak wavelength shift in Yb/Bi ions co-doped silica-based glasses,” Opt. Express 18(18), 18642–18648 (2010).
[CrossRef] [PubMed]

S. Zhou, H. Dong, G. Feng, B. Wu, H. Zeng, and J. Qiu, “Broadband optical amplification in silicate glass-ceramic containing beta-Ga2O3:Ni2+ nanocrystals,” Opt. Express 15(9), 5477–5481 (2007).
[CrossRef] [PubMed]

B. Zhou, H. Lin, B. Chen, and E. Y. Pun, “Superbroadband near-infrared emission in Tm-Bi codoped sodium-germanium-gallate glasses,” Opt. Express 19(7), 6514–6523 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett. 36(2), 166–168 (2011).
[CrossRef] [PubMed]

V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
[CrossRef] [PubMed]

J. Ruan, G. Dong, X. Liu, Q. Zhang, D. Chen, and J. Qiu, “Enhanced broadband near-infrared emission and energy transfer in Bi-Tm-codoped germanate glasses for broadband optical amplification,” Opt. Lett. 34(16), 2486–2488 (2009).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

Opt. Mater. (5)

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional optimization of bismuth-doped yttria – alumina - silica glass,” Opt. Mater. 32(2), 368–373 (2009).
[CrossRef]

G. Chi, D. Zhou, Z. Song, and J. Qiu, “Effect of optical basicity on broadband infrared fluorescence in bismuth-doped alkali metal germanate glasses,” Opt. Mater. 31(6), 945–948 (2009).
[CrossRef]

X. Jiang and A. Jha, “An investigation on the dependence of photoluminescence in Bi2O3-doped GeO2 glasses on controlled atmospheres during melting,” Opt. Mater. 33(1), 14–18 (2010).
[CrossRef]

I. Razdobreev and L. Bigot, “On the multiplicity of Bismuth active centres in germano - aluminosilicate preform,” Opt. Mater. 33(6), 973–977 (2011).
[CrossRef]

M. Hughes, T. Suzuki, and Y. Ohishi, “Compositional dependence of the optical properties of bismuth doped lead - aluminum - germanate glass,” Opt. Mater. 32(9), 1028–1034 (2010).
[CrossRef]

Quantum Electron. (1)

E. Dianov, V. Dvoyrin, V. Mashinsky, A. Umnikov, M. Yashkov, and A. Gur'yanov, “CW bismuth fibre laser,” Quantum Electron. 35(12), 1083–1084 (2005).
[CrossRef]

Science (1)

M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information,” Science 332(6025), 60–65 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Emission spectra of GA1.0B0E glass upon 500 nm excitation at different temperatures; (B) Fluorescence intensity and mean lifetime of GA1.0B0E as a function of temperature. Dynamic data were obtained for excitation at 500 nm, recording emission at 1200 nm.

Fig. 2
Fig. 2

(A) Emission spectra of GA0.5B0E for different excitation wavelengths (760-980 nm, labels). Artifact peaks marked with “*” result from scattered excitation light. (B) Dependence of integrated emission intensity of GA0.5B0E on excitation power density (W/cm2), using a 808 nm diode laser.

Fig. 3
Fig. 3

(A) Absorption spectra of Bi singly-doped and Er/Bi co-doped samples. Inset: photographs of GA0B0.5E and GA0.5B0E [20]. (B) Emission spectra of GA0.5B0E, GA0.5B0.5E, GA0B0.5E, and GA0.5B1.5E upon 808 nm pumping. Artifact peaks marked with “*” result from second order diffraction of the pumping laser.

Fig. 4
Fig. 4

Simplified energy level diagram of Er3+ and Bi, and dominant mechanism of interactions in co-doped Al2O3-GeO2 glasses. Since the nature of Bi-related NIR emission remains unclear, Bi energy levels are defined by the absorption spectrum (curve 2 of Fig. 3A). The ground state is labeled by GS. The four excited states are ES1, ES2, ES3 and ES4, corresponding to the absorption peaks at 1000, 800, 700 and ~500 nm, respectively. Non-radiative processes are indicated by dotted lines, absorption transitions by solid red lines with upward arrow. Radiative transitions marked by solid lines with downward arrows. Predominant cross-relaxation energy transfer processes are denoted CR1, CR2, CR3 and CR4.

Fig. 5
Fig. 5

Upconverted green emission from Er3+ in (95-x-y)GeO2·5Al2O3·xBi2O3·yEr2O3 (x=0, 0.3, 0.5, 1.0; y=0, 0.5) glasses under 808 nm 1W laser pumping.

Tables (1)

Tables Icon

Table 1 Intensity ratio REr/Bi, 4I13/2 lifetime (τEr) of Er3+, mean lifetime (τBi) of Bi-luminescence and energy transfer efficiency (ηEr→Bi and ηBi→Er) in (95-x-y) GeO2 · 5Al2O3 · xBi2O3 · yEr2O3 (x = 0, 0.3, 0.5, 1.0, 1.5; y = 0, 0.5, 1.5) glasses.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ Bi = Itdt/ Idt

Metrics