Abstract

α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10−16 cm−3s−1. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
    [CrossRef]
  2. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
    [CrossRef]
  3. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
    [CrossRef]
  4. M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
    [CrossRef]
  5. H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
    [CrossRef] [PubMed]
  6. K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
    [CrossRef]
  7. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).
  8. K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7724 .
    [CrossRef] [PubMed]
  9. M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
    [CrossRef]
  10. J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
    [CrossRef]
  11. G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. 7(1), 21–44 (2001).
    [CrossRef]
  12. G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minnely, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998).
    [CrossRef]
  13. H. S. Hsu, C. Cai, and A. M. Armani, “Ultra-low-threshold Er:Yb sol-gel microlaser on silicon,” Opt. Express 17(25), 23265–23271 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-25-23265 .
    [CrossRef] [PubMed]
  14. M. Mayer, SIMNRA 6.03 simulation program (1997 – 2006).
  15. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
    [CrossRef]
  16. R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
    [CrossRef]
  17. X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter 52(22), 15889–15897 (1995).
    [CrossRef] [PubMed]
  18. C. Strohhofer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
    [CrossRef]
  19. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314 (2001).
    [CrossRef]
  20. W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
    [CrossRef]
  21. B. C. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+ and Yb3+-Er3+ doped phosphate glasses,” J. Opt. Soc. Am. B 17(5), 833 (2000).
    [CrossRef]
  22. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  23. M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
    [CrossRef]

2010

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7724 .
[CrossRef] [PubMed]

2009

2008

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

2007

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

2006

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

2005

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

2003

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

C. Strohhofer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

2001

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314 (2001).
[CrossRef]

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. 7(1), 21–44 (2001).
[CrossRef]

2000

1998

1997

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

1995

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter 52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

1991

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

1983

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

Armani, A. M.

Axmann, A.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

Bell, M. J. V.

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

Bongiorno, C.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Cai, C.

Caplen, J. E.

Cardile, P.

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

Chang, J. S.

Choi, H.-J.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Di Pasquale, F.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

Dong, L.

Ennen, H.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

Federighi, M.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

Franzò, G.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Grimaldi, M. G.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

Han, H.-C.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Hsu, H. S.

Hwang, B. C.

Iacona, F.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Irrera, A.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

Isshiki, H.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

Jeong, Y.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

Jiang, S.

Kawaguchi, T.

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

Kimura, T.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

Lee, H.

Lee, J.-C.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Lee, M.

Lo Savio, R.

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Luo, T.

Masaki, K.

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Minnely, J. D.

Miritello, M.

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Nilsson, J.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

G. G. Vienne, J. E. Caplen, L. Dong, J. D. Minnely, J. Nilsson, and D. N. Payne, “Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers,” J. Lightwave Technol. 16(11), 1990–2001 (1998).
[CrossRef]

Nunes, L. A. O.

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

Oliveira, S. L.

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

Park, N.

Payne, D. N.

Peyghambarian, N.

Piro, A. M.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Polman, A.

C. Strohhofer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314 (2001).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

Pomrenke, G.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

Priolo, F.

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

Quirino, W. G.

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

Richardson, D. J.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

Sahu, J. K.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

Schneider, J.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

Seong, H.-K.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Shin, J. H.

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7724 .
[CrossRef] [PubMed]

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Sorbello, G.

Strohhofer, C.

C. Strohhofer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314 (2001).
[CrossRef]

Suh, K.

K. Suh, M. Lee, J. S. Chang, H. Lee, N. Park, G. Y. Sung, and J. H. Shin, “Cooperative upconversion and optical gain in ion-beam sputter-deposited ErxY2-xSiO5 waveguides,” Opt. Express 18(8), 7724–7731 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-7724 .
[CrossRef] [PubMed]

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Sung, G. Y.

Toratani, H.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter 52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Valley, G. C.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. 7(1), 21–44 (2001).
[CrossRef]

Vienne, G. G.

Wang, X. J.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

Watson, J.

Yuan, G.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

Zhou, Z.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

Zou, X.

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter 52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin films,” Adv. Mater. (Deerfield Beach Fla.) 19(12), 1582–1588 (2007).
[CrossRef]

Appl. Phys. Lett.

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43(10), 943 (1983).
[CrossRef]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Federighi and F. Di Pasquale, “The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations,” IEEE Photon. Technol. Lett. 7(3), 303–305 (1995).
[CrossRef]

J. Appl. Phys.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers,” J. Appl. Phys. 90(9), 4314 (2001).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[CrossRef]

M. Miritello, R. Lo Savio, A. M. Piro, G. Franzò, F. Priolo, F. Iacona, and C. Bongiorno, “Influence of the matrix properties on the performances of Er-doped Si nanoclusters light emitting devices,” J. Appl. Phys. 100, 013502 (2006).
[CrossRef]

J. Appl. Phys. Lett.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. Lett. 108, 013506 (2010).

J. Lightwave Technol.

J. Non-Cryst. Solids

W. G. Quirino, M. J. V. Bell, S. L. Oliveira, and L. A. O. Nunes, “Effects of non-radiative processes on the infrared luminescence of Yb3+ doped glasses,” J. Non-Cryst. Solids 351(24-26), 2042–2046 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

Nano Lett.

H.-J. Choi, J. H. Shin, K. Suh, H.-K. Seong, H.-C. Han, and J.-C. Lee, “Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence,” Nano Lett. 5(12), 2432–2437 (2005).
[CrossRef] [PubMed]

Opt. Commun.

J. K. Sahu, Y. Jeong, D. J. Richardson, and J. Nilsson, “A 103 W erbium–ytterbium co-doped large-core fiber laser,” Opt. Commun. 227(1-3), 159–163 (2003).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

G. C. Valley, “Modeling cladding-pumped Er/Yb fiber amplifiers,” Opt. Fiber Technol. 7(1), 21–44 (2001).
[CrossRef]

Opt. Mater.

C. Strohhofer and A. Polman, “Absorption and emission spectroscopy in Er3+-Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

K. Masaki, H. Isshiki, T. Kawaguchi, and T. Kimura, “The effect of annealing conditions on the crystallization of Er–Si–O formed by solid phase reaction,” Opt. Mater. 28(6-7), 831–835 (2006).
[CrossRef]

Phys. Rev. B

M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, “Enhanced down conversion of photons emitted by photoexcited ErxY2-xSi2O7 films grown on silicon,” Phys. Rev. B 81(4), 041411 (2010).
[CrossRef]

Phys. Rev. B Condens. Matter

X. Zou and H. Toratani, “Evaluation of spectroscopic properties of Yb3+-doped glasses,” Phys. Rev. B Condens. Matter 52(22), 15889–15897 (1995).
[CrossRef] [PubMed]

Other

M. Mayer, SIMNRA 6.03 simulation program (1997 – 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) RBS spectra of (Y1-xErx)2Si2O7, Yb2Si2O7 and (Yb1-xErx)2Si2O7 thin films. In the latter case P(Yb2O3) = 140 W, P(Er2O3) = 70 W. The vertical lines in the bottom axis indicate respectively the surface energy edges of O, Si, Y, Er and Yb atoms at increasing energies. (b) PIXE spectra of (Yb1-xErx)2Si2O7 thin films obtained by varying the powers applied to the two RE oxide targets, Yb2O3 and Er2O3. The x-ray transitions associated to Yb and Er are labeled.

Fig. 2
Fig. 2

PL spectra (a) from α-(Y1-xErx)2Si2O7 under λexc = 980 nm, (c) from α-Yb2Si2O7 and (e) from α-(Yb1-xErx)2Si2O7 under λexc = 920 nm. In addition we reported the PLE spectra recorded (b) at 1535 nm from α- (Y1-xErx)2Si2O7, (d) at 1025 nm from α-Yb2Si2O7 and (f) at 1535 nm from α-(Yb1-xErx)2Si2O7. The inserts report the levels schemes of the Er3+ and Yb3+ ions. Note that spectrum (b) has been multiplied by a factor of 10. This same amplification factor has been used in (f) in the wavelength range 750-850 nm.

Fig. 3
Fig. 3

PL(λexc = 935 nm)/PL(λexc = 980 nm) ratio recorded at 1535 nm as a function of NYb, bottom scale, or NEr, top scale (NEr + NYb = 18 at.%). In the right hand scale is reported the estimation of mediated contribution.

Fig. 4
Fig. 4

(a) PL decays recorded at 980 nm for NYb = 1.5 at.% and NYb = 17.8 at.% in absence (NEr = 0 at.%) and in presence of Er3+. Continuous red lines are the single exponential fits of the experimental data. (b) Energy-transfer efficiency η (left hand scale) and energy-transfer coefficient CET (right hand scale) as a function of NYb, calculated by Eq. (1) and Eq. (2).

Fig. 5
Fig. 5

(a) PL decays recorded at 1535 nm for α-(Yb1-x-Erx)2Si2O7 at different NEr. For NEr = 1.6 at.% the decay curve for α-(Y1-x-Erx)2Si2O7 is also reported. Continuous black lines are the single exponential fits of the data. (b) PL intensity (left hand scale) and lifetime (right hand scale) at 1535 nm as a function of NYb (bottom scale) in α-(Yb1-x-Erx)2Si2O7. For comparison the decay times (black open triangles) at 1535 nm in α-(Y1-x-Erx)2Si2O7 as a function of NEr (top scale) have been reported. The blue line is a guide for the eye. The measurements of both panels are obtained under λexc = 980 nm and at ϕ = 1.6 × 1019 cm−2s−1.

Fig. 6
Fig. 6

Photoluminescence intensity at 1535 nm as a function of ϕ for the α-(Yb1-xErx)2Si2O7 and the α-(Y1-xErx)2Si2O7 film having the same NEr. The excitation wavelength is λexc = 980 nm. The continuous curves are fits of the experimental data, obtained by using Eq. (3). A scheme of the up-conversion phenomenon is depicted on the right-hand corner.

Tables (1)

Tables Icon

Table 1 The powers applied to the Yb2O3 and Er2O3 targets and the corresponding measured PIXE area of Yb Lα1,2 and Er Lα1,2 (expressed in counts × keV) and estimated atomic concentration (in atomic percentage) for all the (Yb1-x-Erx)2Si2O7 thin films

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W Yb-Er = W Yb + C ET N Er ,
η=1 W Yb W Yb-Er .
N 1,Er = 1 2C up τ 1,Er  ( 1+σ Er ϕ τ 1,Er ( 2+4C up N Er τ 1,Er Er ϕ τ 1,Er ) ( 1+σ Er ϕ τ 1,Er ) ).

Metrics