Abstract

We propose a compact nano-metallic structure for enhancing and concentrating far-field transmission: a faced folded nano-rod (FFR) unit, composed of two folded metallic nano-rods placed facing each other in an aperture. By analyzing local charge, field, and current distributions in the FFR unit using three-dimensional finite difference time domain (FDTD) calculation results, we show that although charge and field configurations become somewhat different depending on the polarization states of the illumination, similar current flows are formed in the FFR unit, which entail similar far-field radiation patterns regardless of the polarization states, making the FFR unit a quasi-polarization-insensitive field concentrator. We demonstrate this functionality of the FFR unit experimentally using the holographic microscopy which provides us a three-dimensional map of the complex wavefronts of optical fields emanating from the FFR unit.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).
  3. B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
    [CrossRef]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
    [CrossRef] [PubMed]
  5. S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
    [CrossRef]
  6. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  8. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
    [CrossRef]
  9. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
    [CrossRef] [PubMed]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef] [PubMed]
  11. I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
    [CrossRef]
  12. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
    [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef] [PubMed]
  14. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  16. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
    [CrossRef]
  17. J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
    [CrossRef] [PubMed]
  18. Q.-H. Park, “Optical antennas and plasmonics,” Contemp. Phys. 50, 407–423 (2009).
    [CrossRef]
  19. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  20. S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
    [CrossRef]
  21. K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B 96, 325–335 (2009).
    [CrossRef]
  22. T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
    [CrossRef] [PubMed]
  23. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
    [CrossRef]
  24. T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
    [CrossRef]
  25. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  26. E. Palik, Handboook of Optical Constant of Solids (Academic, 1985).
  27. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
    [CrossRef]
  28. R. D. Murley, “Mie theory of light scattering—limitations on accuracy of approximate methods of computation,” J. Phys. Chem. 64, 161–162 (1960).
    [CrossRef]
  29. W. Stutzman and G. Thiele, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, 1998).
  30. We can find almost the same response when the length of vertical rods is ∼ 430 nm, the same as the folded rods when unfolded.
  31. Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
    [CrossRef]
  32. Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
    [CrossRef] [PubMed]
  33. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  34. J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
    [CrossRef]
  35. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  36. J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
    [CrossRef] [PubMed]

2011

S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
[CrossRef] [PubMed]

2010

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

2009

K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B 96, 325–335 (2009).
[CrossRef]

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Q.-H. Park, “Optical antennas and plasmonics,” Contemp. Phys. 50, 407–423 (2009).
[CrossRef]

M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express 17, 14001–14014 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

2008

J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

2007

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

2006

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

2005

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

1998

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

1985

E. Palik, Handboook of Optical Constant of Solids (Academic, 1985).

1983

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
[CrossRef]

1960

R. D. Murley, “Mie theory of light scattering—limitations on accuracy of approximate methods of computation,” J. Phys. Chem. 64, 161–162 (1960).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Baba, T.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Baran, E.

K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B 96, 325–335 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bharadwaj, P.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Capasso, F.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Challener, W. A.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Cho, S.-W.

Choi, J.

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Chung, T.

S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
[CrossRef]

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Crozier, K. B.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Cubukcu, E.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Deutsch, B.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Diehl, L.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Ebbesen, T.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Fujikata, J.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Gage, E. C.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ghaemi, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Greffet, J.-J.

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Guyot-Sionnest, P.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Hahn, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Hsia, Y. T.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Im, H.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jones, R. J.

Ju, G. P.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kall, M.

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef] [PubMed]

Kim, H.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
[CrossRef] [PubMed]

Kim, K.-Y.

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Kim, S.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

Kobyakov, A.

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lee, B.

Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
[CrossRef] [PubMed]

S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

J. Hahn, H. Kim, S.-W. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
[CrossRef] [PubMed]

Lee, I.-M.

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Lee, S.-Y.

Lesuffleur, A.

Lezec, H.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
[CrossRef]

Lim, Y.

Y. Lim, S.-Y. Lee, and B. Lee, “Transflective digital holographic microscopy and its use for probing plasmonic light beaming,” Opt. Express 19, 5202–5212 (2011).
[CrossRef] [PubMed]

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Lindquist, N. C.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liu, M.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Lunstrom, I.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Makita, K.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Mansuripur, M.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Moloney, J. V.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Murley, R. D.

R. D. Murley, “Mie theory of light scattering—limitations on accuracy of approximate methods of computation,” J. Phys. Chem. 64, 161–162 (1960).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Nylander, C.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
[CrossRef]

Oh, S.-H.

Ohashi, K.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Pakizeh, T.

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef] [PubMed]

Palik, E.

E. Palik, Handboook of Optical Constant of Solids (Academic, 1985).

Park, J.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

Park, Q.-H.

Q.-H. Park, “Optical antennas and plasmonics,” Contemp. Phys. 50, 407–423 (2009).
[CrossRef]

Park, S.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Pelton, M.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).

Rho, S.

S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Rottmayer, R. E.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Scherer, N. F.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Sendur, K.

K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B 96, 325–335 (2009).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

Smythe, E. J.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Stutzman, W.

W. Stutzman and G. Thiele, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, 1998).

Thiele, G.

W. Stutzman and G. Thiele, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, 1998).

Thio, T.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tian, Q.

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

Tsutomu, I.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Wang, J.

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

Wolff, P.

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xu, J.

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

Xu, T.

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

Yu, N.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Zakharian, A. R.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. B

K. Sendur and E. Baran, “Near-field optical power transmission of dipole nano-antennas,” Appl. Phys. B 96, 325–335 (2009).
[CrossRef]

Appl. Phys. Lett.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, “Optical antenna: towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Contemp. Phys.

Q.-H. Park, “Optical antennas and plasmonics,” Contemp. Phys. 50, 407–423 (2009).
[CrossRef]

Handboook of Optical Constant of Solids

E. Palik, Handboook of Optical Constant of Solids (Academic, 1985).

IEEE J. Quantum Electron.

Y. Lim, J. Hahn, S. Kim, J. Park, H. Kim, and B. Lee, “Plasmonic light beaming manipulation and its detection using holographic microscopy,” IEEE J. Quantum Electron. 46, 300–305 (2010).
[CrossRef]

IEEE J. Select. Top. Quantum Electron.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Select. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

J. Phys. Chem.

R. D. Murley, “Mie theory of light scattering—limitations on accuracy of approximate methods of computation,” J. Phys. Chem. 64, 161–162 (1960).
[CrossRef]

J. Phys. Chem. C

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116–123 (2007)
[CrossRef]

Jpn. J. Appl. Phys.

I. Tsutomu, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
[CrossRef]

Nano Lett.

T. Pakizeh and M. Kall, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9, 2343–2349 (2009).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef] [PubMed]

T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Opt. Eng.

J. Xu, T. Xu, J. Wang, and Q. Tian, “Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture,” Opt. Eng. 44, 018001 (2004).
[CrossRef]

Opt. Express

Proc. IEEE

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96, 1810–1835 (2008).
[CrossRef]

Proc. SPIE

T. Chung, J. Choi, Y. Lim, I.-M. Lee, K.-Y. Kim, and B. Lee, “Faced folded rods as nano antenna for optical devices,” Proc. SPIE 7851, 78510S (2010).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

J.-J. Greffet, “Nanoantennas for light emission,” Science 308, 1561–1563 (2005).
[CrossRef] [PubMed]

Sens. Actuat.

B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuat. 4299–304 (1983).
[CrossRef]

Sensors

S. Rho, T. Chung, and B. Lee, “Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors,” Sensors 11, 1565–1588 (2011).
[CrossRef]

Other

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).

W. Stutzman and G. Thiele, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, 1998).

We can find almost the same response when the length of vertical rods is ∼ 430 nm, the same as the folded rods when unfolded.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of a faced folded nano-rod (FFR) unit. (b) SEM picture of an exemplary fabrication result.

Fig. 2
Fig. 2

(a) Intensity, (b) magnitude/direction of the electric fields inside the FFR unit (z = 65 nm) at a specific phase at which the capacitive electric fields across two narrow gaps are maximized, and (c) distribution of the current flows at the top surface of the FFR unit at π/5 after the phase used in (b). Note that it takes about π/5 for the electric field shown in (b) to reach the top surface. From (a) to (c), the illuminating light is x-polarized. (d) Electric field intensity of double (upper and lower) coupled-rods. In case of horizontally-polarized illumination, the optical response of the FFR unit is very similar to this. (e) The vertical part of the folded rod is like a bridge between upper and lower rods and becomes a new path for the charge exchange. Semi-circular current flows can be induced due to these vertical parts. However, we note that dual dipoles induced via the capacitive coupling play key roles and the effects of charge exchange or redistribution through the vertical parts are rather weak.

Fig. 3
Fig. 3

(a)–(c) The same as Fig. 2 when the illuminating light is y-polarized, in which case the optical response of the FFR unit is completely different from that of two vertical rods whose electric field intensity is plotted in (d). Here the phase taken in (b) is when the electric fields in the interior of the FFR unit are maximized. (e) In the vertically-polarized illumination, upper and lower horizontal parts of the single folded rod provide short paths for charge deposits, producing capacitive coupling between them, and the interference between two capacitive couplings in left and right single folded rods dominates the overall response and the far-field radiation of the FFR unit.

Fig. 4
Fig. 4

Experimental setup adopting the holographic microscopy to measure and reconstruct a three-dimensional distribution of optical fields radiated by the FFR unit.

Fig. 5
Fig. 5

(a) SEM picture of a fabricated bare aperture (2 μm × 2 μm) and (b), (c) transmitted light intensities through it at y = 0 and x = 0 planes, respectively. In this case, we do not have to consider whether the illumination is polarized horizontally or vertically since the aperture is a square. Intensities are normalized with respect to the maximum value among the results of (b), (c), and Figs. 6(b)–6(e) before normalization.

Fig. 6
Fig. 6

(a) SEM picture of a fabricated FFR unit placed in an aperture and (b)–(e) transmitted light intensities through it. (b), (c) At y = 0 and x = 0 planes, respectively, when the incident light is polarized horizontally. (d), (e) The same as (b) and (c) for the case of vertically-polarized illumination. Intensities are normalized with respect to the maximum value among the results of (b)–(e) and Figs. 5(b)–5(c) before normalization.

Fig. 7
Fig. 7

Cross-sectional views of transmitted light through an FFR unit at various longitudinal (z) positions for (a)–(c) horizontally- and (d)–(f) vertically-polarized incident light.

Fig. 8
Fig. 8

Plot of maximum local field values on the top surface of the FFR unit, changing the wavelength of incident light. It shows that the designed FFR unit is optimized near the visible wavelength of 633 nm.

Metrics