Abstract

In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  2. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
    [CrossRef]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  4. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
    [CrossRef] [PubMed]
  5. T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
    [CrossRef]
  6. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13(22), 8906–8912 (2005).
    [CrossRef] [PubMed]
  7. P. B. Bareil and Y. L. Sheng, “Angular and position stability of a nanorod trapped in an optical tweezers,” Opt. Express 18(25), 26388–26398 (2010).
    [CrossRef] [PubMed]
  8. F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
    [CrossRef] [PubMed]
  9. D. C. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16(5), 2942–2957 (2008).
    [CrossRef] [PubMed]
  10. J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
    [CrossRef]
  11. G. Gouesbet, J. A. Lock, and G. Gréhan, “Partial-wave representations of laser beams for use in light-scattering calculations,” Appl. Opt. 34(12), 2133–2143 (1995).
    [CrossRef] [PubMed]
  12. S. H. Simpson and S. Hanna, “Numerical calculation of interparticle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23(6), 1419–1431 (2006).
    [CrossRef] [PubMed]
  13. G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).
  14. N. Passilly, R. de Saint Denis, K. Aït-Ameur, F. Treussart, R. Hierle, and J.-F. Roch, “Simple interferometric technique for generation of a radially polarized light beam,” J. Opt. Soc. Am. A 22(5), 984–991 (2005).
    [CrossRef] [PubMed]
  15. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [CrossRef] [PubMed]

2011

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

2010

2008

2006

S. H. Simpson and S. Hanna, “Numerical calculation of interparticle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23(6), 1419–1431 (2006).
[CrossRef] [PubMed]

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

2005

2004

T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

2003

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2000

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

1995

1989

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
[CrossRef]

1986

Agarwal, R.

Aït-Ameur, K.

Alexander, D. R.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
[CrossRef]

Ashkin, A.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[CrossRef] [PubMed]

Bareil, P. B.

Barton, J. P.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
[CrossRef]

Benito, D. C.

Bjorkholm, J. E.

Borghese, F.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Cheong, F. C.

T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Chu, S.

de Saint Denis, R.

Denti, P.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Dziedzic, J. M.

Gouesbet, G.

Gréhan, G.

Grier, D. G.

Hanna, S.

Heckenberg, N. R.

Hierle, R.

Hu, G. J.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Iatì, M. A.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Ladavac, K.

Li, J.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Lieber, C. M.

Liphardt, J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Lock, J. A.

Long, Q.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Maragò, O. M.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Nieminen, T. A.

Passilly, N.

Pauzauskie, P. J.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Radenovic, A.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Roch, J.-F.

Roichman, Y.

Rubinsztein-Dunlop, H.

Saija, R.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Sheng, Y. L.

Shroff, H.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Simpson, S. H.

Sow, C. H.

T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Tao, T.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Trepagnier, E.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Treussart, F.

Wu, X. P.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Yang, P. D.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Yu, G. H.

Yu, T.

T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Zhang, G. X.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Acta Phys. Sin.

G. J. Hu, J. Li, Q. Long, T. Tao, G. X. Zhang, and X. P. Wu, “FDTD numerical simulation of the trapping force of microsphere in single optical tweezers,” Acta Phys. Sin. 60, 30301 (2011).

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000).
[CrossRef]

J. Appl. Phys.

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66(7), 2800–2802 (1989).
[CrossRef]

J. Opt. Soc. Am. A

Nanotechnology

T. Yu, F. C. Cheong, and C. H. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15(12), 1732–1736 (2004).
[CrossRef]

Nat. Mater.

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, and J. Liphardt, “Optical trapping and integration of semiconductor nanowire assemblies in water,” Nat. Mater. 5(2), 97–101 (2006).
[CrossRef] [PubMed]

Nature

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. M. Maragò, “Radiation torque and force on optically trapped linear nanostructures,” Phys. Rev. Lett. 100(16), 163903 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The normalized intensity distribution in the focal plane. (a)linearly polarized beam; (b)the radial cross section of linearly polarized beam; (c)radially polarized beam; (d)the radial cross section of radially polarized beam.

Fig. 2
Fig. 2

Computational domain.

Fig. 3
Fig. 3

Axial (a) and radial (b) forces on nanowire with refractive index of 1.6 as a function of nanowire’s displacement from the focus. The asterisk represents linearly polarized beam, the circle denotes radially polarized beam.

Fig. 4
Fig. 4

Forces on nanowire with refractive index of 2.5.

Fig. 5
Fig. 5

Axial forces on nanowire with refractive index of 3.0.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E inc = n=1 m=n n [ a mn Rg M mn (kr,θ,φ)+ b mn Rg N mn (kr,θ,φ)]
H inc =j ε μ n=1 m=n n [ b mn Rg M mn (kr,θ,φ)+ a mn Rg N mn (kr,θ,φ)]
a 1n = a 1n = b 1n = b 1n = (i) n+1 [4π(2n+1)] 1/2 g 5,n
g 5,n =exp[ s 2 (n1)(n+2){1+(n1)(n+2) s 4 [3(n1)(n+2) s 2 ]+              (n1) 2 (n+2) 2 s 8 [105(n1)(n+2) s 2 +0.5 (n1) 2 (n+2) 2 s 4 ]},  
s=1/k ω 0
E inc r = E inc r inc
H inc r = H inc r inc
F= S <T>dS
T = 1 2 Re[ εE E * +μH H * 1 2 (ε E 2 +μ H 2 )n ].

Metrics